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Abstract

We propose a model of TCP performance that cap-
tures the behavior of a set of network paths with di-
verse characteristics. The model uses more parameters
than others, but we show that each feature of the model
describes an effect that is important for at least some
paths. We show that the model is sufficient to describe
the datasets we collected with acceptable accuracy. Fi-
nally, we show that the model’s parameters can be es-
timated using simple, application-level measurements.

1 Introduction

The goal of this work is to explore the feasibility of pre-
dicting TCP performance by (1) using measurements
to estimate the characteristics of a network path, and
(2) using a model of TCP and the estimated parame-
ters to generate predictions. We would like to find a
minimum-cost set of measurements that are sufficient
to make acceptable predictions.
Our approach is empirical in the sense that the model

should include all features that affect performance in
current networks. Thus we are forced to deal with
the full diversity of Internet paths and hosts, including
some unexpected phenomena; for example, we find that
the growth of the congestion window during slow start
is nondeterministic, at least for some sender-receiver
pairs.
A number of models have been proposed that re-

late TCP performance to various path character-
istics, including round trip time, drop rate and
bottleneck bandwidth. Most of these models fo-
cus on the steady state behavior of long transfers
[15][19][20][27][21][29][28][24][11].
Because these models omit slow start, they cannot

predict the performance of transfers where slow start
makes up a significant part of transfer time, which are
the vast majority of transfers. Also, they are based
on the assumption that congestion avoidance is the
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only steady-state behavior of TCP. Our model includes
slow start and three steady-state behaviors: conges-
tion avoidance, buffer-limited, and self-clocking. Two
recent papers also consider buffer-limited steady state
[2][14]; as far as we know, no other models include a
self-clocking steady state.

One limitation of many previous models is that they
treat the drop rate as exogenous; that is, a charac-
teristic of the network that is independent of the be-
havior of TCP. For many network paths, an important
determinant of TCP performance is the occurrence of
endogenous drops, which are caused by the transfer
itself. Misra and Ott consider the case where loss prob-
ability depends on the congestion window [23]. Because
of the complexity of this issue, our model abstracts away
exogenous and endogenous drop rates. Instead, we es-
timate the probability of dropping out of slow start as
a function of the current window size.

Some models of short TCP transfers have been pro-
posed [9][22][4][33][32]. These models identify two
sources of variability in transfer times: variability in
rtts and dropped packets. Our datasets suggest a third
source of variability: nondeterminism in the growth of
the congestion window during slow start. In some cases,
this nondeterminism is the primary source of variability.
We incorporate this behavior in our model.

Another limitation of these models is that they do not
address the transition from slow start to steady state
(one exception is [13]). For many paths in the cur-
rent Internet, this transition happens in the size range
from 10–100KB, which happens to be the size range of
many TCP transfers. In traces of Web downloads at
Anonymized University, this range contained 15–20%
of the transfers (based on our analysis of datasets from
[5]).

Thus, one contribution of this work is a model that
includes all features that, according to observation,
have a significant effect on TCP performance, includ-
ing slow start, the transition to steady state, and all
three steady-state behaviors. Of course, the price of
completeness is complexity. Our model has more pa-
rameters than others, and it is based on details of a
specific path, which requires a measurement infrastruc-
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ture. But we show that this complexity is necessary;
that is, it is impossible to make accurate predictions
without it. We also show that the model is sufficient
to describe the behavior of the datasets we collected,
with two exceptions. Finally, we show that the network
characteristics the model uses can be estimated from
simple application-level measurements.

Another contribution of this work is that our mea-
surements reveal two phenomena that occur in real
networks and that have a strong effect on TCP per-
formance: self-clocking steady state (Section 2.1) and
nondeterministic slow start (Section 3.3).

1.1 Applications

Why is it useful to predict the performance of TCP
transfers? One reason is to improve user interfaces.
For example, many web browsers display information
on the progress of long transfers and make simple esti-
mates of the remaining transfer times. In theory, these
estimates are useful to users, but in current practice
they are so inaccurate that many users have learned to
ignore them. Another reason is to automate selection
when a file is available from multiple servers. Often
users are asked to choose among mirror sites based on
geographic proximity, without information about the
expected performance of the various paths. Finally, for
distributed applications, predictions are useful for both
resource selection and scheduling.

Because network performance is so variable, it is usu-
ally impossible to predict the duration of a single trans-
fer accurately. The best we can do is to provide a range
or distribution of values. Thus, all of our predictions are
stochastic, in the sense that we predict the distribution
of transfer times, and evaluate the quality of prediction
by the agreement of the predicted and actual distri-
butions. These distributions can characterize sources
of short-term variability, like queue delays, as well as
sources of long-term variability, like path changes.

Another application of our model is performance de-
bugging. For many of the paths we observe, our analysis
indicates which of several factors limit performance—
bandwidth, congestion, slow start overhead, buffer ca-
pacity, etc. This information could be used for system
tuning; for example, allocating buffer space at a busy
server.

1.2 Availability of data

Our problem formulation is based on the assumption
that when we predict the duration of a transfer, we
know something about the network path the transfer
will use, including the end points. The goal of this
paper is two ask both “What information do we need?”
and “What information can we expect to have?”

The answer to the second question depends on the
application. In distributed environments, the available
resources (computers, other devices, and the network
links that connection) are known, and performance
characteristics may be available. For example, the Net-
work Weather Service (NWS) runs constantly in a Grid
environment, monitoring the performance of a set of
links and making reports available to applications. The
techniques we propose here could be used in this kind
of environment to collect data and make predictions.

For HTTP and other TCP transfers, it is less obvious
that the data needed to make a prediction are available.
Users navigate the Web unpredictably, making transfers
from many servers along many network paths.

To investigate the feasibility of predicting HTTP
transfers, we looked at logs collected by WWW proxy
servers at Boston University in April and May 1998.
These logs are available from the Internet Traffic
Archive (http://ita.ee.lbl.gov/).

Although users access many different servers, a small
number of servers handle a significant part of the traf-
fic. For example, the top-ten servers handled 30% of
the requests. This observation suggests that a new re-

quest is likely to access a server that has been

accessed many times in the past.

To quantify this observation, we ran through the
trace sequentially and, for each request, counted the
number of times the same server had been accessed prior
to the request. For the majority of accesses (63%), the
history of previous accesses includes at least 30 requests.
For a larger majority (81%) the history includes at least
10 requests.

Access patterns in other environments show similar
patterns. The LBL-CONN-7 dataset contains traces of
more than 700,000 TCP connections between Lawrence
Berkeley Laboratories and the rest of the Internet,
recorded over 30 days in 1993. Of these, we extracted
the 694,594 connections that transferred a known, non-
zero amount of data. These connections access 12,657
unique IP addresses, but again the top-ten addresses
handled 32% of the connections.

For each connection we counted the number of con-
nections to the same address that came before. In this
case, a large majority of connections (81%) enjoy a his-
tory that includes at least 30 connections.

Assuming, then, that the historical information we
need is available, how much space would be necessary to
maintain it? Based on the LBL dataset, we can imagine
keeping data about 20,000 remote hosts. As an upper
bound, we might keep data from the most recent 100
connections per host, and we expect most connections
to transfer fewer than 100,000 bytes (in the BU dataset,
only 0.3% of transfers are bigger). Such a history would
require about 32 KB per host, or a total of 625 MB.

We conclude that it is feasible to maintain a database
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with traces of previous TCP connections, and that for
most of the paths a client uses, the database would con-
tain information about a useful number of previous con-
nections (10–30).

2 Measurement

There are three general approaches to network mea-
surement. One is to collect packet-level information
somewhere in a network path. Another is to collect
kernel-level information at either the sender or receiver.
The third is to collect information at the application
level. The packet and kernel-level approaches provide
the most detailed information and the most accurate
timings. Application-level measurements are easy to
implement, and the resulting tools are portable.
We use application-level measurement to develop and

evaluate our model. The analysis we use to estimate
the model’s parameters and make predictions is also
applicable to passive, network-level observation of TCP
connections, but we find that the information we need
is available at the application level, or can be inferred.
Furthermore, in cases where timing inaccuracy is intro-
duced, for example by context switches, these errors can
be filtered out. In general, the variability in wide-area
networks necessitates repeated measurement. This re-
dundancy also mitigates the inaccuracy of application-
level measurement. Therefore, we expect the improve-
ment from kernel- or network-level measurements to be
small.
Most Web browsers already contain code to moni-

tor the progress of HTTP transfers. With a few small
changes, we instrumented a version of GNU’s wget

(available from gnu.org/software/wget) to record the
arrival time of each chunk of data as presented to the
application level. The following pseudocode shows the
structure of the instrumentation:

set the timer

connect (socket)

record elapsed time

write (request)

while (more data) {

select (socket)

record elapsed time

read (buffer)

record amount of data

}

The connect system call returns when the connec-
tion is established, so the first elapsed time is the time
to send a SYN packet and receive a SYN-ACK packet.
The select system call returns when data from the
socket is available. The second elapsed time is the time
to send a request and receive the first byte of the re-
ply. For subsequent reads, the elapsed time depends
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Figure 1: Timing charts for 30 HTTP transfers.

on the arrival of packets and the ability of the OS to
present packets to the application layer. In most cases,
the spacing of packets is big enough that each read cor-
responds to one packet arrival.

For each transfer, the modified version of wget pro-
duces two vectors: ti is the time in ms when the ith
read started, and si is the total number of bytes read
when the ith read completed. Figure 1 plots 30 trans-
fers of a file from a Web server, showing s versus t. At
the beginning of each transfer, the slow start mecha-
nism is apparent. Increasing bursts of packets arrive at
regular intervals. Looking at the number of packets in
each burst, which we call the apparent window size, we
infer that the congestion window at the sender doubles
during each round, from 2 to 4 to 8. Looking at the in-
tervals between bursts, we can make multiple estimates
of the rtt.

In the next round, we expect the congestion window
to be 16, and in some cases there is a clear break after
the 16th packet, but in many cases there is no appar-
ent break, and packets arrive continuously at intervals
of roughly 1.6 ms. These cases demonstrate successful
TCP self-clocking (see Section 2.1).

A few transfers show evidence of packet loss. When
a packet is dropped, the OS can’t present additional
data to the application layer until the retransmission
arrives, so a drop appears as a long horizontal line.
When the retransmission arrives, it is made available
along with all the data that arrived in the interim; this
mass “arrival” appears as a long vertical line. This path
shows a significant number of drops, but in most cases
they have little effect on performance. At the top of
the figure, there are several transfers that suffer long
delays because one of the last packets in the transfer
was dropped. In this case, there are not enough dupli-
cate ACKs to trigger Fast Retransmission; instead the
sender waits for a timeout, with a significant impact on
performance.

This figure suggests a tentative list of the parameters
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Figure 2: Transition from slow start to self-clocking.

that determine TCP performance:

• Size and variability of rtt.

• Initial and subsequent congestion windows.

• Bottleneck bandwidth.

• Buffer size at the sender and receiver.

• Frequency and performance impact of drops.

• Steady-state behavior and throughput.

In Section 3 we present techniques for estimating
these parameters from measurements. The next two
sections discuss self-clocking and buffer-limited steady
state behavior.
Timing diagrams for our datasets are available at

allendowney.com/research/tcp/timing, along with
our characterization of each.

2.1 Self-clocking

Conventional wisdom holds that the TCP slow start
mechanism inevitably ends when the congestion win-
dow exceeds the bandwidth-delay product (bdp) and the
sender induces one or more drops at the bottleneck link.
As motivation for TCP Vegas, Brakmo and Peterson
claim that TCP “needs to create losses to find the avail-
able bandwidth,” and later, “if the threshold window
is set too large, the congestion window will grow until
the available bandwidth is exceeded, resulting in losses
. . . ” [8]. Similar claims are common in discussions of
TCP performance: Hoe writes “. . . the sender usually
ends up outputting too many packets too quickly and
thus losing multiple packets in the same window” [16].

Allman and Paxson claim “For TCP, this estimate is
currently made by exponentially increasing the sending
rate until experiencing packet loss” [1]. Barakat and
Altman write “Due to the fast window increase, [slow
start] overloads the network and causes many losses”
[4].
In many common circumstances, these claims are in-

correct on two counts:

• The congestion window does not increase expo-
nentially until a drop occurs. The double-per-rtt
heuristic only applies until cw > bdp. After that,
the rate of growth of the congestion window is lim-
ited by the arrival of ACKs, which is limited by the
rate of data through the bottleneck. Until a drop
occurs or cw exceeds ssthresh, the congestion win-
dow grows linearly with a slope of bdp/rtt = bw.

• Slow start does not necessarily induce a drop. If
there is enough buffer capacity in the network
(quantified below), transfers can and often do tran-
sition into self-clocking steady state without induc-
ing a drop.

The following example and analysis explain these con-
clusions. Figure 2 shows the transition from slow start
to self-clocking for a hypothetical network path, repre-
sented by a pipeline with bdp = 10 packets and a queue
that drains 1 packet per time step. The queue repre-
sents the router before the bottleneck link in the path.
Given bdp and the initial congestion window, we de-

fine cw∗ as the largest slow start congestion window
smaller than bdp. In the example, cw∗ = 8 packets.
After the sender transmits these 8 packets, we define
as t = 0 the moment before the first ACK reaches the
sender.
As each packet arrives, the sender increases cw and

transmits two packets. Thus, at t = 8, cw = 16 and
8 packets have accumulated in queue. During the next
two time steps, the queue drains slightly, and then the
system reaches self-clocking steady state. During each
time step, the congestion window increases by 1, the
sender transmits 2 packets, the receiver gets 1 packet,
and the queue grows by 1 packet. During each rtt, cw
increases by bdp. Even though the sender is in slow
start, the congestion window grows linearly. This pat-
tern continues until a packet is dropped or cw exceeds
ssthresh. In either case, the sender drops into conges-
tion avoidance.
In congestion avoidance, the congestion window

grows more slowly, adding only one packet for each
cw ACKs. Since the rate of growth is proportional
to 1/cw, the congestion window grows logarithmically.
The queue grows slowly, too; as long as the router at the
bottleneck link has the capacity to store the queue, and
there are few exogenous drops, self-clocking can con-
tinue. Even if a packet is dropped, self-clocking can
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continue as long as cw doesn’t drop below bdp long
enough to drain the queue. In some of our datasets,
we observe exactly this behavior.

The definitive characteristic of self-clocking

steady state is that the rate-limiting factor is

the bottleneck bandwidth, not the congestion

window. During self-clocking, the sender may be in
slow start or congestion avoidance, and the congestion
window may be growing exponentially, linearly, or log-
arithmically.

How much buffer capacity is needed? During the
transition to self-clocking, the queue grows to cw∗ pack-
ets and then shrinks to 2cw∗ − bdp. In steady state,
the queue grows again until cw = ssthresh, at which
point the queue contains ssthresh − bdp packets. At
that point the sender switches to congestion avoid-
ance and the queue grows almost negligibly, adding
one packet per cw time steps. In the best case, when
ssthresh = bdp, this switch happens when the queue is
only bdp− cw∗, which is less than bdp/2.

This analysis is applicable if there are no exogenous
drops during slow start, and if the perturbations caused
by cross-traffic are small compared to the transmission
time of a packet at the bottleneck. In that case the ACK
stream will seldom be compressed, and the sender will
seldom be induced to transmit faster than bw for more
than two packets.

This leaves us with an empirical question: how often
does the transition to self-clocking succeed? Unfortu-
nately, our observations are limited; in 10 of our 13
datasets, there is no opportunity to observe the transi-
tion because cw never reaches bdp. But the other three
datasets (Servers 7, 9 and 10) suggest that self-clocking
is common. For servers 7 and 10, the vast majority
of transfers make the transition with no indication of
dropped packets. For Server 9 about half of the trans-
fers enter self-clocking; the other half enter congestion
avoidance.

These observations indicate that in many cases the
self-clocking mechanism is effective, and that concerns
about congestion induced by slow start may be over-
stated.

2.2 Buffer-limited

In order to handle retransmissions, the sender has to
keep a copy of all unacknowledged packets. Thus, the
send buffer limits the amount of data in flight. Sim-
ilarly, the receive buffer limits the advertised window,
which limits the amount of data in flight. So the max-
imum sustained transmission rate is one buffer per rtt,
where the limiting buffer is the smaller of the send and
receive buffers.

In general, it is not easy to tell whether the limiting
factor is the send or receive buffer. Using packet-level
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Figure 3: Timing charts for 30 HTTP transfers.

information, T-RAT observes the advertised windown
and uses heuristics to make this distinction [35]. This
information is not available at the application level, but
often the size of at least one of the buffers is. In our
measurements, the receive buffer is large enough that it
is never the limiting factor.
Figure 3 shows a set of transfers where the rate-

limiting factor is the send buffer. After 3 rounds of
slow start, the apparent window size reaches 12 pack-
ets and doesn’t increase for the next four rounds. Since
almost all transfers converge to the same window size,
and most transfers show no sign of a drop, and the win-
dow size doesn’t increase, we infer that the limitation
is the send buffer, not the congestion window.

3 The Datasets

Of course, a model of TCP performance should apply
to the widest range of network conditions. To develop
our model, we wanted to collect datasets from network
paths with a variety of characteristics.
The ubiquity and accessibility of Web servers makes

them a convenient tool for network measurements.
Two of our datasets come from servers provided by
collaborators. The other 11 are popular servers we
found in traces from the IRCache Project (http://
www.ircache.net/). Looking at one day of traces from
10 proxy servers, we identified frequently-accessed files
that were at least 100,000 bytes. Starting with the most
popular, we made measurements of the first 11 files
we were able to download successfully. We used the
HTTP/1.1 Range header to get only the first 100,000
bytes of data (plus roughly 350 bytes of header). Two
servers ignored the Range header and sent the whole
file.
We chose a size of 100,000 bytes because we expected

that most transfers of that size would leave slow start.
In fact, we underestimated; in 6 of the datasets, most
transfers never leave slow start.
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Figure 4: Cdf of read sizes for three servers.

Each dataset includes 100 transfers, with an average
of 100 seconds between them (exponential distribution).
Thus, the duration of the measurements is 3–4 hours.
This time scale is appropriate for our intended applica-
tions, where we expect historic information to be avail-
able, but not necessarily recent.
The purpose of these datasets is to identify the pa-

rameters that determine TCP performance and to allow
us to evaluate the model. A performance prediction
tool would not need so much data, and it would not
necessarily make active measurements. In fact, one ad-
vantage of this model is that it can work with passive
measurements.
The characteristics of the paths we measured are

diverse. Geographical locations include New York,
Chicago, Colorado, California, Maine, and China. The
range of path lengths is from 12 to 29 hops. The range
of rtts is from 7 to 270 ms. The range of bottleneck
bandwidths is from 350 Kbps to 100 Mbps. The range
of bdp is from 1 to almost 2000 packets. We believe
that this dataset is representative of many paths in the
current Internet.
Our client is located at Boston University, which

is a multi-hosted institution with relatively low-traffic,
high-bandwidth network connections. So the client end
of these paths may not be typical of Internet users.
The following sections present the steps we used to

process these datasets and estimate path characteris-
tics. The heuristics we use are similar to those imple-
mented in T-RAT, although T-RAT is based on packet-
level information [35].

3.1 Packet sizes

If the application reads data as soon as it is available,
the data read usually correspond to single incoming
packet. We expect that most applications can keep up
with most wide-area networks, despite the vagaries of
the local scheduler.
To test this assumption, we plotted the distribution of
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Figure 5: Bandwidth estimates for three servers.

read sizes for each server; Figure 4 shows three of them.
Server 1 is typical of the servers we looked at; the other
two are unusual. In the typical case, the vast majority
of reads are 1448 or 1460 bytes, sizes that correspond
to the maximum segment size (mss) of the path, minus
L2 and L3 headers. For Servers 4 and 2, the most com-
mon read size is 1460 bytes, but a significant number
of packets are smaller. The reason for this diversity is
that the initial and subsequent congestion windows on
this server are not integer multiples of the mss.
We conclude that in most cases, the application is

reading data fast enough to get a single packet per read,
and that there are never more than two packets in the
receive buffer.

3.2 Bottleneck bandwidth

The idea of using packet spacing to estimate bot-
tleneck bandwidth was proposed by Keshav [17] and
has been implemented in various network measurement
tools [7][10][31][18][12].
Brakmo and Peterson implemented a version of TCP

Vegas that uses packet-pair bandwidth estimates to
choose the value of ssthresh [8]. Similar techniques
have been proposed and evaluated elsewhere [16][3][1].
Partridge et al. have implemented a version of FreeBSD
that uses packet pair estimates to accelerate slow start
[30].
To implement packet-pair bandwidth estimation us-

ing our measurements, we compute the first difference
of the vectors t and s, yielding dt, which is the inter-
packet spacing, and ds, which contains the packet sizes.
For each packet, we compute the instantaneous band-
width bwi = dsi/dti. If packets leave the bottleneck
link back to back, and their spacing isn’t perturbed by
cross traffic, bw estimates the bottleneck bandwidth of
the path.
Current bandwidth estimators are based on the as-

sumption that packets often arrive at the destination
with unperturbed packet spacing, and that the correct
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bottleneck bandwidth is the mode of the distribution of
estimates. Dovrolis et al. warn that under some traffic
conditions, the global mode is determined by cross traf-
fic and not bottleneck bandwidth, but they still expect
a local mode at the correct value [12].

For continuous distributions, the notion of a mode is
awkward to define, and methods for identifying modes
tend to be ad hoc. Furthermore, many of our datasets
exhibit no clear modes. Figure 5 shows distributions
of bw estimates from servers with slow, medium and
high bottleneck bandwidths. Server 7 shows a strong
mode around 7 Mbps, but the other two cases are less
promising. Server 8 shows a mode near 90 Mbps, but
the distribution is nearly uniform from 70 to 100 Mbps.
Similarly, the “mode” for Server 1 spans the range from
0 to 100 Mbps. It is difficult to generate a precise band-
width estimate from these distributions.

For our model, we have implemented a simple filtering
technique that improves the repeatability of the band-
width estimates, but we have not performed a rigorous
evaluation of its accuracy. Fortunately, the model only
needs a coarse estimate of the bandwidth. Bandwidth
estimation based on TCP transfers is an active area of
research; as improved methods become available, they
can be incorporated into the model.

Fortunately, we have more information to work with.
Looking at timing charts like Figure 1, we see that in-
terpacket spacing is highly variable, but there are many
parallel linear segments that indicate a common slope.
We assume that this characteristic slope corresponds to
the bottleneck bandwidth, and try to estimate it statis-
tically.

Again, we start by computing, for each chart, the
vector of bandwidth estimates bwi. For each of these
vectors, we look at each subsequence of k bandwidth
estimates, and compute the deviation of the jth sub-
sequence, σj = 1/k

∑j+k

i=j |bwi − m|, where m is the
median of the estimates in the subsequence. The sub-
sequences with the lowest deviation correspond to the
straightest line segments in the timing chart.

During processing, we keep only the n subsequences
with the lowest deviation. We filter out the subse-
quences with higher deviation on the assumption that
the packets were not sent back-to-back, or their inter-
packet spacing has been perturbed. Figure 5 (bottom)
shows distributions of the estimates that remain after
filtering with k = 8 and n = 100. In all three cases,
the range of the estimates has been greatly reduced.
Furthermore, in all of our datasets, the mode of the
distribution is at or near the median; thus, we use the
median as our bandwidth estimate and the interquartile
distance as an indicator of its precision. This filtering
technique works well with a range of values for k and n,
provided that the sender frequently transmits k packets
faster than the bottleneck bandwidth.

Server Est bw Range Interquart
1 24.908 (24.908, 28.014) 1.147%
2 63.656 (63.656, 86.860) 0.701%
3 89.040 (88.996, 90.051) 0.513%
4 92.710 (91.975, 92.712) 0.269%
5 90.677 (89.628, 91.937) 0.687%
6 63.870 (41.590, 84.870) 11.974%
7 6.982 (6.914, 7.075) 0.212%
8 91.261 (91.261, 92.313) 0.190%
9 0.331 (0.331, 0.513) 5.845%
10 9.376 (9.356, 9.412) 0.126%
11 89.474 (89.444, 90.866) 0.669%
12 22.694 (21.129, 33.811) 15.300%
13 88.775 (88.775, 90.142) 0.386%

Table 1: Bandwidth estimates for each dataset. Estbw
is based on all 100 timing charts. Range contains the
highest and lowest estimates from each subset of 20
charts. Interquart is one-half the interquartile dis-
tance, written as a percentage of the estimated bw.

For Server 7, we happen to know that the bottleneck
link in the path is a 10 Mbps ATM PVC. The estimated
bandwidth is 7.0 Mbps, which may be a good estimate
of the data throughput of the link, discounted for pro-
tocol and link-level overhead.

For most of our datasets, we don’t know the actual
bottleneck bandwidths of the path, so we can’t evalu-
ate the accuracy of these estimates. But by dividing our
datasets into subsets, we can evaluate their repeatabil-
ity. For each dataset, we generate 5 subsets with 20
randomly-chosen timing charts in each. We generate a
bandwidth estimate for each subset, and compute the
range and interquartile distance of the five estimates.
Table 1 shows the results for all 13 datasets.

In most cases, the range of estimates is small, which
suggests that they are actually measuring the capacity
of a link in the path. However, one weakness of our
technique is that it might be fooled by what Dovrolis et
al. call a “post-narrow capacity mode.”

For Server 6, the range of estimates is quite wide. On
further investigation, we found that this dataset con-
tains three paths with different characteristics.

Subsequent requests for the same URL are handled
by different servers, due to changes in DNS information
caused by a distributed content delivery mechanism like
those used by Akamai Technologies and Speedera Net-
works.

The filtering technique we use here can be integrated
into existing bandwidth measurement tools. As future
work, we plan to evaluate this technique more rigorously
and compare it with existing tools.
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Figure 6: Window sizes for the first four rounds of slow
start, for 100 HTTP connections.

3.3 Congestion windows

The duration of short TCP transfers tends to be a multi-
ple of the round trip time, where the multiplier depends
on the behavior of the congestion window at the sender.
Thus, in order to predict TCP performance for a given
server, we have to measure its initial and subsequent
congestion windows. To do that, we have to be able to
identify the end of each round of packets.

To separate arriving packets into rounds, we look at
the vector of interpacket spacing, ds, and identify in-
tervals that seem to be due to congestion control rather
than queue delays. To do that, it helps to know rtt and
the interpacket spacing at the bottleneck. As a coarse
estimate of rtt, we collect the measured rtts of the SYN-
ACK and request-reply rounds and compute their 5th
percentile. To get the interpacket spacing at the bottle-
neck, we use the bandwidth estimation technique in the
previous section and compute, inter = dsi/bw. Then
we compute a logarithmic transformation of the inter-
arrival time, dt′i = f(dti), scaled so that dt

′

i = 0 if
dti = inter and dt′i = 1 if dti = rtt. This transforma-
tion gives us a criterion for breaking a timing chart into
rounds; if dt′i > 0.5, we consider the ith packet to be
the beginning of a new round. During slow start, the
breaks between rounds are obvious and the choice of

this threshold has little effect. As the congestion win-
dow approaches bdp, it becomes impossible to identify
rounds, but fortunately it is unnecessary, because at
that point we identify and characterize the steady-state
behavior.

Figure 6(top) shows a server with the kind of slow
start behavior we expect. The first round is always 2
packets, the second is always 4, and the third is usually
8, except in a few cases where, it seems, a drop causes
the sender to switch to congestion avoidance. By the
fourth round, the congestion window has reached bdp,
which is about 15 packets, and it is no longer possible
to identify the breaks between rounds accurately.

Although this behavior is comprehensible, it is not
typical. In most of our datasets, the behavior of the
congestion windows turns out to be nondeterministic.
Figure 6(bottom) shows an example. The initial con-
gestion window is consistently 2524 B, a little less than
2 packets. But the second round is sometimes 3 and
sometimes 4 packets. The third round is usually twice
the second, but again, it sometimes falls short by a
packet or two. The same thing happens in the next
round; the congestion window either doubles or nearly
doubles, seemingly at random. Of our 13 datasets, 10
show significant nondeterminism starting in the second
or third round and continuing in subsequent rounds.

The window sizes for all datasets are available from
allendowney.com/research/tcp/wins.

The most likely explanation of this behavior is an
interaction between the delayed ACK mechanism at the
receiver and the growth of the congestion window at the
sender. In steady state, most receivers send one ACK
for every two packets. Other ACKs are delayed until
the next packet arrives or until a timer expires [26].

During slow start, many senders increase the conges-
tion window by one mss for each new ACK that ar-
rives. If the receiver acknowledges every other packet,
the congestion window tends to grow by a factor of 1.5
per round. To accelerate the growth of the congestion
window, many receivers ACK every packet during slow
start. In general, though, the receiver does not know
whether the sender is in slow start and must use heuris-
tics.

In accordance with RFC1122, most receivers use a
timer to bound the time an ACK is delayed. We sus-
pect that this timer is the source of nondeterminism in
window sizes. For our datasets, the receiver was run-
ning Red Hat Linux 7.3 (kernel version 2.4.18-3). On
this system, the duration of the delayed ACK timer
depends on the estimated rtt, with minimum and max-
imum values of 40 and 200 ms.
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Figure 7: Distributions of round trip times for the SYN-
ACK round, reply-request round, and next three data
rounds of 100 HTTP connections.

3.4 Round trip time

For short transfers, the distribution of transfer times
depends on the distribution of rtts. In general it is triv-
ial to measure the rtt of a network path. Tools like
ping can send packets of various types and sizes, and
measure the time to get a reply. So it is no surprise that
we can use TCP to estimate rtt, or that by making re-
peated measurements we can estimate the distribution
of rtts.

A TCP connection takes at least two rtts, one for the
SYN-ACK round and one for the request-reply round.
If the transfer size is greater than the initial congestion
window, additional data rounds are required. In our
datasets, we can measure the SYN-ACK and request-
reply rounds directly, and after segmenting the timing
chart we can estimate the rtts of the next three data
rounds reliably.

Figure 7 shows distributions of rtt for SYN-ACK,
reply-request, and the first data round. Server 2 (top)
is typical. The SYN-ACK round sees the shortest rtts
because the packet sizes are minimal and there is no
application-level processing at the server. The request-
reply round takes the longest, and has the highest vari-
ability, because the application-level processing at the
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Figure 8: Distributions of delays for the SYN-ACK
round, for four servers. The axes are transformed so
that a lognormal distribution appears as a straight line.

server is synchronous and may require disk access.

In two of our datasets, the rtts for the request-reply
round are 2–10 times longer than the network rtt. Fig-
ure 7(bottom) shows an example. Clearly for this kind
of application, a model of TCP performance needs to
include a model of application-level performance. After
the request-reply round, the servers we observed seem
to keep up with the network. Even in high-bandwidth,
low-rtt paths, the subsequent data rounds happen at
network speed.

Server 3 is an exception. After the first 40 packets,
each transfer is delayed by roughly 50 ms (a few are
shorter and a few are as long as 400 ms). Since the
distribution of these delays is nothing like the distribu-
tion of network rtts, we conclude that they are caused
by the server, possibly the local scheduler. In general,
though, our measurements do not distinguish between
network and server delays. Barford and Crovella ad-
dress this problem more successfully using network-level
traces [6].

In general, the distribution of network delays is heav-
ily skewed. Therefore, moments computed from sam-
ples do a poor job of characterizing the shape of the
distribution. In many cases, the distribution of rtts is
well-described by a three-parameter lognormal model.
For a given set of measured rtti, we estimate the min-
imal value, θ = min rtti, and then compute the delays,
delayi = rtti − θ. By plotting the distribution of de-
lays, we can see whether the lognormal model is appro-
priate. Figure 8 shows the delays for the SYN-ACK
round for four servers with a range of variability. The
axes have been transformed so that a lognormal dis-
tribution appears as a straight line. The actual distri-
butions are only approximately straight, but they are
close enough that we think the lognormal parameters
summarize them well.

Table 2 shows the estimated parameters for the SYN-
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Server θ ζ σ E[delay]
ms log10 ms log10 ms ms

1 271.564 1.198 0.545 3.842
2 7.351 -0.379 0.424 0.749
3 14.247 -0.114 0.292 0.931
4 75.239 -0.547 0.316 0.608
5 6.648 -0.253 0.126 0.783
6 6.611 0.087 0.746 1.441
7 24.471 0.505 0.703 2.120
8 87.689 -0.414 0.598 0.790
9 37.593 1.452 0.833 6.038
10 50.942 0.009 0.662 1.256
11 227.368 1.218 0.870 4.937
12 239.564 1.960 0.238 7.303
13 50.225 -0.541 0.301 0.609

Table 2: Estimated parameters for the distribution of
rtts in the SYN-ACK round for 13 servers.

ACK round for each server. The parameters ζ and σ are
the mean and standard deviation of log10 delay. The ex-
pected value of delay is E[delay] = pow(10, (ζ+σ2/2)).

3.5 Correlations

The duration of a short TCP transfer is the sum of a se-
ries of consecutive rtts. Therefore, correlation between
successive rtts affects the distribution of transfer times.
In general the strength of correlation depends on the
interval between packets. For modeling TCP perfor-
mance, the relevant interval is the rtt of the path.

Bolot characterized the relationship between the rtts
of successive packets and found that correlations dimin-
ish as the timescale increases, and disappear when the
interval between packets exceeds 500ms [7]. Moon et
al. estimate the autocorrelation function for series of
RTP packets and find strong correlations that dimin-
ish over larger intervals, again becoming insignificant
beyond 500ms [25].

By breaking our observations of slow start into a se-
ries of rtts, we can use our measurements to estimate
correlations between successive rounds. For each round,
we compute the cdf of all rtts seen during that round.
Then for each timing chart, we find the rank of each ob-
served rtt in the cdf for its round. Next we transform
the ranks using the inverse of the normal distribution
function, and then compute Pearson’s correlation. Ta-
ble 3 shows the estimated correlations for the first four
rounds, for each server. Values in parentheses are sta-
tistically insignificant at 90% confidence.

About half of the servers show significant correla-
tions, some larger than 0.8. All significant correla-
tions are positive, and usually consistent from round
to round. For Server 3, the correlation between data
rounds is above 0.7, but the correlations in the first

Server syn-ack req-rep data 1 data 2
req-rep data 1 data 2 data 3

1 0.203 0.180 0.220 0.364
2 (-0.113) (0.126) (0.076) (-0.108)
3 (-0.082) (-0.131) 0.702 0.770
4 (0.096) 0.265 (-0.034) (-0.008)
5 (0.116) (-0.121) (0.088) (0.092)
6 0.671 0.640 0.736 0.713
7 0.396 0.334 0.310 0.326
8 (0.044) (-0.020) (-0.185) (-0.269)
9 0.721 0.682 0.657 0.638
10 0.184 (0.081) (0.157) (-0.144)
11 0.811 0.745 0.874 0.915
12 0.631 0.625 0.875 0.895
13 (-0.040) (0.101) (-0.047) (-0.043)

Table 3: Correlations in rtt for the first four rounds of
TCP connections.

two rounds are insignificant because the duration of the
request-reply round is limited by the server and unre-
lated to network conditions.

Based on prior work, we might expect higher correla-
tions on paths with shorter rtts, but that is not the case.
There is no apparent relationship between rtt and the
degree of correlation. On the other hand, paths with
high expected delays (see E[delay] in Table 2) tend to
have high correlations. This result makes sense, since
paths with longer delays are more likely to have queues
that persist long enough to induce correlations on the
relevant time scale.

4 Performance model

Finally we are ready to assemble a model of TCP per-
formance. The model is based on the following state
transition diagram:

ss0 ss1 ss2 ssn

ca scbl

The states labeled ss0 through ssn are slow start
states; the states labeled ca, bl and sc represent conges-
tion avoidance, buffer-limited, and self-clocking steady
state.

By looking at the timing chart for each transfer, we
try to identify the sequence of states the transfer went
through. For each transfer, we have a series of observed
window sizes, wi, computed as in Section 3.3. All trans-
fers start in ss0. If w0 is less than 5.0, we move to ss1; a
larger window probably indicates a dropped packet, so
we move to ca. For subsequent rounds, we compute the
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ratio of successive window sizes, wi/wi−1. If this ratio
is between 1.5 and 2.0, we move to the next slow start
state. If it falls short of 1.5, we assume that a dropped
packet caused the congestion window to shrink and we
move to ca. If we see evidence of a dropped packet (see
Section 2), we also move to ca. Finally, if the window
exceeds bdp, we move to sc.
For the slow start states and bl, we keep track of the

distribution of window sizes in each state. For states ca
and sc, we keep track of the distribution of throughputs,
computed as the average throughput between the end
of the last round of slow start and the end of the timing
chart.
Thus, for each timing chart, we compute a series of

states that starts in ss0 and ends when the transfer
ends or when it reaches one of the terminal states, ca
and sc. By counting the state transitions in these series,
we estimate the probability of each state transition.
The states of the model describe the behavior of a

transfer, and do not necessarily correspond to the TCP
state of the sender or receiver. For example, when the
model infers that a transfer is in self-clocking steady
state, the sender might be in slow start or congestion
avoidance. This is an abstraction, not an error.
The model now contains all the information we need

to compute the distribution of transfer times for a given
size. By making a random walk through the state tran-
sition diagram, we can generate a single estimate of the
transfer time. By making repeated walks, we can esti-
mate the distribution. The next section explains this
process in more detail.

4.1 Estimating transfer times

In previous sections, we have shown how to use a set of
timing charts to estimate the parameters of a network
path. These parameters are:

• The distribution of rtts for the SYN-ACK round,
the request-reply round, and the first data round.

• The correlation in rtts for the first two data rounds.

• The state transition probabilities for n slow start
states plus ca, sb and sc.

• The distribution of window sizes for each slow start
state, and bl.

• The distribution of throughputs for ca and sc.

These parameters are sufficient to estimate the trans-
fer time for a given transfer size, s. Here is the algorithm
in pseudocode:

1. Set stotal, the total data received, to 0. Choose
rtt0 from the distribution of SYN-ACK rtts and
rtt1 from the distribution of request-reply rtts. Set

ttotal, the total elapsed time, to rtt0 + rtt1. Start
in state ss0.

2. Using the state transition probabilities, choose the
next state at random.

3. If the new state is ca or sc, choose throughput
at random from the distribution of through-
puts. Compute the remaining time trem = (s −
stotal)/throughput and return the sum trem+ttotal.

4. Choose a window size, win, from the distribution of
window sizes for the current state. If stotal+win >
s, the transfer completes during this round. Return
ttotal.

5. Update stotal = stotal + win. Choose rtt from
the distribution of data rtts, and update ttotal =
ttotal + rtt.

6. Go to step 2.

By repeating this process, we estimate the distribu-
tion of transfer times.

5 Validation

To test the model, we divide each dataset randomly
into two sets of 50 transfers. We use the first subset
to estimate parameters and generate a distribution of
transfer times for a range of sizes. Then we compare
the predicted times with the measured times from the
second subset.
Figure 9 shows the results for four servers we chose

to represent various steady state behaviors. For Server
1, most transfers end in slow start. For some file sizes,
the distribution of transfer times is multimodal because
the characteristics of the path changed during the mea-
surement. The model captures this behavior well. For
Server 2, most transfers are buffer-limited, so the trans-
fer time is determined by the distribution of rtts. In
this case the distributions are multimodal because the
growth of the congestion window is nondeterministic.
For Server 9, many transfers enter congestion avoid-
ance almost immediately, but some are self-clocking.
The range of transfer times is unusually wide, but the
model describes the distributions reasonably well. For
Server 10, most transfers are self-clocking and the range
of transfer times is relatively narrow.
Similar figures for all 13 datasets are available from

allendowney.com/research/tcp/aptimes.100000.
In two cases, the model is not as successful. As dis-

cussed in Section 3.4, transfers from Server 3 see a delay
after the first 40 packets. Since this delay isn’t included
in the model, our predictions for longer transfers are too
short. The other problem is Server 6, which is actually
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Figure 9: Distributions of predicted (thick, gray lines)
and actual transfer times (thin, darker lines).

Server Distance Distance
100,000 50,000

1 0.804 1.044
2 0.771 3.475
3 3.490 8.716
4 0.087 0.303
5 2.639 1.871
6 3.682 6.802
7 0.937 0.627
8 0.265 0.459
9 1.938 2.194
10 1.194 2.023
11 1.237 2.657
12 0.782 0.803
13 0.697 2.254

Table 4: Distance metrics for predicted transfer times,
given measurements truncated after 100,000 or 50,000
bytes.

three servers with different path characteristics. Subse-
quent requests for the same URL are handled by differ-
ent servers, due to changes in DNS information caused
by a distributed content delivery mechanism like those
used by Akamai Technologies and Speedera Networks.
The model combines the characteristics of the three
paths, forming a trimodal distribution of rtts. When we
convolve this distribution with itself, it gets smoother,
whereas the real distribution of transfer times is sharply
trimodal. Although the location and variance of the
predicted distribution are right, the shape is not.
Although some servers exhibit features that are not

captured by the model, the model is able to capture the
behavior of a wide range of server and network condi-
tions.

5.1 Short measurements

A stronger test of the model is whether, given measure-
ments of short transfers, it can predict the duration of
long transfers. To simulate measurements of shorter
transfers, we cut off each timing chart after the first
50,000 bytes and predict the duration of 100,000 byte
transfers. Again, we divide the datasets in half, using
50 timing charts to build the model and testing it on
the other 50.
Table 4 shows the results, comparing a distance met-

ric for predictions that use the censored measurements
(right column) with the predictions from the previous
section (left column).
Graphs of the predicted and actual distributions

are available from allendowney.com/research/tcp/

aptimes.50000.
The distance metric is, loosely speaking, the normal-
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ized area between the predicted and actual distribu-
tions, computed by summing for each percentile, p, from
1 to 99:

|F−1
p (p)− F−1

a (p)|

F−1
a (p)

where Fp and Fa are the actual and predicted distribu-
tion functions.
For most servers, the predictions based on censored

data are good, either a little worse or, by chance, a
little better than the predictions that use all the data.
When the predictions fail it is because the truncated
datasets don’t contain enough information to classify
the steady-state behavior of the server. For example,
Server 2 is buffer-limited, but in the truncated dataset
it never leaves slow start, so the model predicts transfer
times that are too short. We conclude that, in order to
predict the performance of long transfers, it is critical
to observe at least a few transfers that leave slow start.

6 Conclusions

Using measurements from a small but diverse set of net-
work paths, we identify the set of network parameters
that are necessary to predict TCP performance, and
show that these parameters can be estimated with a
reasonable number of application-level measurements.
We propose a model that uses estimated parameters

to make stochastic predictions of TCP performance.
The features of this model are:

• It models slow start and three steady-state behav-
iors: congestion avoidance, buffer-limited, and self-
clocking. Thus, it is applicable to the full range of
transfer sizes.

• Rather than estimate the exogenous drop rate ex-
plicitly, the model incorporates both exogenous
and endogenous drops in an array of state tran-
sition probabilities.

• The model includes correlations between successive
rtts, which is important on paths where the ex-
pected queue delays are large compared to rtt.

• It is applicable to all current and most conceivable
implementations of TCP, provided that they im-
plement Fast Retransmission. In some cases, its
estimated parameters can be used to identify the
implementation of the sender or receiver.

Our measurements reveal two phenomena that are
relevant to TCP performance. The first is that self-
clocking may make TCP less prone to endogenous drops
than previously believed. The second is that the growth
of the congestion window during slow start is nondeter-
ministic, at least for some TCP implementations.

6.1 Limitations

Application-level measurements are easy to implement,
and tools that use them are portable. The price of this
convenience is that some of the things we would like
to measure, like drop rates and window sizes, are not
directly visible to an application. We have shown that
it is possible to infer this information with acceptable
accuracy, but there are two parts of the model that
would benefit from more network-level information.

The first is identifying dropped packets. The heuris-
tics our model uses are successful in the sense that they
identify characteristics in a timing chart that indicate
a dropped packet, but without network-level traces we
can’t assess their accuracy.

The second limitation is the difficulty of distinguish-
ing server delays from network delays. For the HTTP
transfers we looked at, most server delays occur during
the request-reply round; after that, the servers kept up
with the network. Other kinds of TCP transfers, like
ftp, may be similar, but there are other cases where
a more detailed model of server performance may be
necessary.

Finally, an aspect of TCP performance that we left
out of the model is the effect of dropped packets at
the end of a transfer. In our datasets, most drops
were caught by the Fast Retransmit mechanism, so they
tended not to impose long delays, except indirectly by
reducing the congestion window. When a packet is
dropped at the end of a transfer, there may not be
enough ACK packets to trigger Fast Retransmit, and
a transfer may suffer a timeout. In our datasets, these
events are rare, but their effect is significant.

6.2 Future Work

Our experiments show that the parameters of the model
are consistent; when we divide a dataset in half at ran-
dom, we can use the parameters from one half to predict
the performance of the other half. The next step is to
make the model predictive; that is, given a set of past
measurements, we would like to predict future perfor-
mance. To do that, we have to address two additional
problems. The first is to find a number of measure-
ments, and their timescale, that is sufficient to capture
the stochastic properties of a network path. The second
is to identify and deal with the nonstationarity induced
by path changes and other large-timescale variability.
Fortunately, several previous projects have addressed
these problems, including the Network Weather Service
(NWS) [34]. Our next step is to incorporate our model
into a measurement infrastructure like the NWS.
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