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TCP Self-Clocking and Bandwidth Sharing
Allen B. Downey

Abstract—
We propose a simple queueing model for TCP transfers sharinga bot-

tleneck link and examine its behavior when the buffer at the bottleneck is
large compared to the bandwidth-delay product. This model explains some
behaviors of TCP that have already been observed, and predicts other be-
haviors that are new. We present measurements that demonstrate these
behaviors in the current Internet.

I. I NTRODUCTION

Researchers have proposed many models of TCP perfor-
mance, most of which have focused on the steady-state
behavior of long TCP transfers [1][2][3][4][5][6][7][8][9]
[10][11][12][13][14][15]. Most of this work has been based,
sometimes implicitly, on the assumption that the availablebuffer
capacity in the network is small compared to the bandwidth-
delay product (bdp) for most paths.

This paper investigates the behavior of TCP when buffer ca-
pacity is large compared tobdp and the exogenous drop rate is
low. By simulation and analysis, we find:
• During slow start, the congestion window (cw) increases ex-
ponentially only untilcw > bdp. After that it increases linearly
until it exceeds the slow start threshold (ss). After that, it grows
as the square root of time. This derivation explains observations
of sub-linear growth reported by Altman et al. [11].
• Long transfers can enter a steady state in whichcw grows
without inducing dropped packets. We call this state SC, for
“self-clocking.” Self-clocking is a packet transmission pattern,
identified by Jacobson [16], in which the send rate is limitedby
the receipt of ACKs, rather than by the send window. We derive
the conditions that make SC possible and describe transitions
between slow start, congestion avoidance and SC.
• Long transfers that share a bottleneck can enter a steady state
in which they tend to transmit periodically, their congestion win-
dows grow, and the proportion of sharing is independent of the
base round trip times of the paths (rtt). We call this state QS,
for “queue sharing”, and derive the relationships betweenss, the
send and receive buffers, the period length and the proportion of
sharing.
We focus on low degrees of multiplexing on the assumption that
for many Internet paths, the bottleneck links are near the edges,
not in the core. If the number of hosts behind a bottleneck is low,
and the great majority of transfers are short, then the number of
long transfers at a given bottleneck at a given time is likelyto be
low.

To validate the model, we observe long (100–2000 KB) trans-
fers between three client sites and more than 200 Web servers.
On the majority of paths, we find at least one transfer that ex-
hibits self-clocking behavior, and on low-bdp paths we find that
SC is the most common state. We also observe simultane-
ous transfers that share a bottleneck, and find many cases that
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demonstrate queue sharing. We conclude that the conditionsre-
quired by the model are common in the current Internet, at least
on some paths.

The primary contribution of this work is that it expands the
scope of existing models to include a domain that is common
in the current Internet but previously ignored. In this domain,
long TCP transfers demonstrate some undesirable behaviors:
they tend to induce persistent queues, and in some cases they
respond to a dropped packet by pausing and then resuming at a
slightly higher send rate, rather than cutting the send rate. Other
behaviors we observed are not necessarily bad, but different; for
example, in this domain TCP does not obey the1/

√
p and1/rtt

heuristics that characterize AIMD congestion avoidance. These
observations improve our understanding of TCP performance
and suggest opportunities for improvement.

Section 2 presents our network model and derives the require-
ments for a transfer to get into and stay in SC. In Section 3
we extend the model to describe the steady-state behavior of
multiple transfers sharing a bottleneck link. Section 4 presents
measurements we made to validate the model. In Section 5 we
discuss some implications of our findings for TCP performance.

We use the following notation:
cw congestion window (packets)
ss slow start threshold (packets)
rtt round trip time (seconds)
tt transfer time per packet (seconds)
bw bottleneck bandwidth (packets/s)
bdp bandwidth delay product (packets)
sb size of receive buffer (packets)
rb size of send buffer (packets)
lb limiting buffer = min(sb, rb)
bb bottleneck buffer (packets)
k packets between drops
p drop rate (1/k)
th effective throughput (packets/s)
mss maximum segment size (bytes)

In common use, “round trip time” and “bandwidth-delay
product” are ambiguous; they may or may not include queue
delays. In this paper,rtt is the minimum round trip time of a
path, sometimes called “basertt”. Similarly, the “delay” inbdp
is the round trip time excluding queue delays. By these defini-
tions,rtt andbdp are fixed for a given path and do not depend
on current traffic.

II. SELF-CLOCKING

In this section we define self-clocking and use a simple net-
work model to demonstrate the transition from slow start to a
self-clocking steady state (SC). In turn, we consider the effect
on a connection in SC of the slow start threshold,ss, and the
limiting send/receive buffer,lb; delayed ACKs, dropped pack-
ets, and sharing with short transfers. In Section III, we explore
the behavior of multiple long transfers sharing a bottleneck.
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Fig. 1. Transition from slow start to self-clocking.

A. Transition to SC

Figure 1 shows a hypothetical network path, represented by a
pipeline with bandwidth-delay productbdp = 10 packets and a
queue that drains 1 packet per time step. The queue represents
the router before the bottleneck link. This example is simpli-
fied by putting the bottleneck close to the sender; we relax this
assumption below.

Givenbdp and the initial congestion window, we definecw∗

as the largest slow start congestion window smaller thanbdp. In
the example,cw∗ = 8 packets. After the sender transmits these
8 packets, we define ast = 0 the moment before the first ACK
reaches the sender.

As each ACK arrives, the sender increasescw and transmits
two packets, one to replace the just-acknowledged data and one
to fill the just-expanded congestion window. Thus, byt = 8, cw
is 16 and 8 packets have accumulated in queue. During the next
two time steps, the queue drains slightly, and then the connec-
tion reaches self-clocking. During each time step, the conges-
tion window increases by 1, the sender transmits 2 packets, the
receiver gets 1 packet, and the queue grows by 1 packet. During
each rtt,cw increases bybdp. Even though the sender is in slow
start, the congestion window grows linearly.

The same analysis applies when the bottleneck doesn’t hap-
pen to be near the sender. Figure 2 shows a more general model
of a network path. The box labeledS is the sender;R is the
receiver. Theei are the minimum latencies of a packet on the
indicated subpath andtt is the transmission time of a packet
on the bottleneck link. The queue at the bottleneck is modeled
explicitly; other queue delays are modeled as random variables
qi (see Section III-A). These random delays are meant to cap-
ture the effect of short connections (connections that don’t leave
slow start).

We have written a simulator that implements this network
model and a model of TCP that includes slow start,ssthresh
and fast recovery (with window inflation). It does not imple-
ment delayed ACKs; the receiver acknowledges every packet.It
doesn’t implement a retransmit timer, so it is not accurate for
simulations with long delays or high drop rates. We assume that
the other links are significantly faster than the bottleneck, so

S R
tte2 + q2 e3 + q3

e1 + q1

Fig. 2. A simple model of a network path.

that the transmission time on other links is small (1µs). Since
we are considering long transfers, data packets are presumed to
bemss bytes. ACKs are presumed to be small. The simulator
is available fromallendowney.com/research/tcp. In
addition to our own simulator, we also use the network simula-
tor ns-2 [17] to validate our simulations and to investigate the
effects of delayed ACKs (see Sections II-D and III-B).

Figure 3 shows the result of a simulation withtt = 20 ms,
e1 = 100 ms,e2 = 30 ms, ande3 = 50 ms. Sincett is 20 ms
andrtt is 200 ms,bdp is 10 packets. The line labeled “data”
shows the total data received versus time, “cw” shows the con-
gestion window, and “queue” shows the queue, all measured in
packets. The marks at the top of the figure show when packets
are sent (if two more more packets are sent back-to-back, the
marks are stacked vertically). We show total data rather than
send rate because in a window-based system, send rate is not
well defined. We could plot the average send rate over an inter-
val, but this averaging would obscure important features that are
clearly visible if we plot total data.

During slow start, packets arrive in discrete rounds, with the
number of packets per round increasing geometrically. After
cw > bdp, packets arrive at the bottleneck rate, so the receiver
ACKs data at the bottleneck rate andcw grows only linearly.

At this point, the transfer is in a self-clocking state we ab-
breviate SC.The definitive characteristic of SC is thatcw >

bdp. The effect of SC is that the send rate is limited by the re-
ceipt of ACKs, which reflect the bottleneck bandwidth, rather
than by the send window.

B. The effect of ss and lb

In the previous section, we ignore the effect ofss andlb. In
this section we ignore their effect; we assume thatbdp < ss <
lb, and then relax this assumption below.

We have seen that whencw exceedsbdp, the transfer enters
SC. If no packets are dropped,cw grows linearly untilcw > ss.
At that point, the sender switches from slow start to congestion
avoidance.

To derive the behavior of the congestion window in SC after
cw > ss, we define a variable,x, that counts arriving ACKs,
and a functioncw(x) that represents the congestion window (in
packets) as a function ofx. For each ACK, the congestion win-
dow grows by1/cw, so we can write:

d

dt
cw(x) =

1

cw
(1)

Then we can solve forcw(x) with initial conditioncw(0) = a.

cw(x) = (2x + a2)1/2 (2)

Socw grows as the square root ofx. We validate these equations
in Section II-D.
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Fig. 3. Simulation of a self-clocking transfer. Although thesender is in slow
start,cw and the queue grow linearly.
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Fig. 4. The effect of ss. Aftercw > ss, the queue andcw grow as the square
root of time.

If a transfer is in SC, ACKs arrive at the sender at intervals
of roughly tt. In that case, real timet is approximatelyx · tt,
which means thatcw grows as the square root of time. This
relationship does not generally hold for transfers in congestion
avoidance, because in that case ACKs don’t arrive at regular
intervals. But it does hold for large values ofcw, because when
cw > bdp the ACK arrival rate is determined by the bottleneck
bandwidth, notcw.

This result explains some previous observations; for example,
Altman et al. report that they observe “paths where TCP window
growth is sub-linear” [11]. They suggest that this behavioris
caused by increasing queue delays. Appenzeller et al. also note
this sub-linearity, but they also attribute it to increasing queue
delays [18]. Our model suggests that this behavior is a result
of self-clocking, that the sub-linear function is specifically the
square root, and that this behavior occurs even if the queue delay
is not increasing.

Figure 4 shows a simulation in whichss is 30 packets, so the
sender switches to congestion avoidance after 30 ACKs. At that
point, the send rate drops from2bw to a little more thanbw.
Afterward,cw and the queue grow slowly.

Eventuallycw may exceed the limiting buffer,lb, which is the
smaller of the send and receive buffers. At that point the number
of packets in flight is limited bylb, so the queue stops growing,
but cw continues to grow.

Many TCP implementations impose an upper boundcw,
sometimes calledcwnd max. This is a system-level parameter
that applies to all connections for a given host, so it is generally
larger thanlb.

To summarize, we identify four phases a TCP connection can
go through:

Phase Condition cw growth Queue growth
1 cw < bdp exponential exponential
2 bdp < cw < ss linear linear
3 ss < cw < lb square root square root
4 cw > lb square root no growth

During Phases 1 and 2, the sender is in slow start; during
Phases 3 and 4 the sender is in congestion avoidance. SC can
occur during Phases 2, 3, and 4.

A connection only passes through all phases ifbdp < ss < lb,
which is not always the case. In many TCP implementations, the
default value ofss is lb [19], so Phase 3 may be rare.

If bdp > ss, the sender switches to congestion avoidance be-
fore the transfer reaches SC. It is still possible for the transfer to
reach SC, but it may take longer. We see some examples of this
in our measurements. Ifbdp > lb, SC is possible in the sense
thatcw > bdp, but the average send rate is limited bylb/rtt.

Discussion of TCP has tended to focus on exponential growth
in Phase 1, neglecting the effect of self-clocking. For example,
Brakmo and Peterson claim that TCP “needs to create losses
to find the available bandwidth.[20]” Allman and Paxson write
“For TCP, this estimate is currently made by exponentially in-
creasing the sending rate until experiencing packet loss” [21].
Barakat and Altman write “Due to the fast window increase,
[slow start] overloads the network and causes many losses” [22].
A casual reader might conclude that long TCP connections in-
evitably induce drops. Fortunately for the Internet, TCP connec-
tions have several opportunities to slow down before inducing a
dropped packet.

C. Conditions for SC

A transfer can only reach SC if the bottleneck buffer,bb, is
large enough to absorb the excess packets. At the beginning of
Phase 2, whencw = bdp, there arebdp packets in flight. If
the packets are equally spaced along the path, there might be
only one packet in the bottleneck queue, but in the worst case
bb = bdp may be necessary for a transfer to reach SC.

Similarly at the beginning of Phase 3, whencw = ss, there
are ss packets in flight. In the worst case,bb = ss may be
necessary, but if packets are equally spaced, Phase 3 is possible
with as little asbb = ss− bdp. If bb > ss, Phase 3 can continue
for a long time. For example, ifss = 20 packets andbb = 100
packets, the sender can transmit 4800 packets, or 6.9 MB, in
Phase 3 (from Equation 2).

Finally, to reach Phase 4, a transfer might needbb = lb in the
worst case, orbb = lb − bdp in the best case. Thus iflb = bdp,
it is possible for a transfer to stay in SC indefinitely with only a
minimal bottleneck buffer.
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Fig. 5. SC with delayed ACKs (ns-2 simulation). The gray line shows the
growth ofcw predicted by Equation 2.
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Fig. 6. Configuration forns-2 simulation.

In Section IV we present measurements that demonstrate that
the conditions for SC are common on at least some paths in the
current Internet. We conclude that awareness of SC is important
for our understanding of TCP performance.

These observations suggests a new category of transfer size:
in addition to “mice”, which never leave slow start, and “ele-
phants”, which are governed by congestion avoidance, we sug-
gest the name “capybara” to describe transfers that are big
enough to get into SC but small enough to terminate before over-
flowing the queue. The capybara is the largest known rodent, a
mouse so big it looks like an elephant.

D. The effect of delayed ACKs

So far our simulations have been based on a simplified model
of the network and TCP behavior. To validate these simplifica-
tions, we run a more detailed simulation usingns-2. Figure 6
shows the configuration for this simulation: there are four nodes
and three links. The latency for each link is 10 ms, sortt is 60
ms. The bottleneck bandwidth is 2 Mbps, sobdp is 15,000 B
or 10 packets. The receive buffer,rb, is 30 packets. By default,
ns-2 sets the initial value ofss to rb, as do many implemen-
tations [19]. The bottleneck buffer,bb is 30 packets, which sat-
isfies the requirement for SC thatbb > lb − bdp. The sender
simulates the behavior of TCP NewReno; the sink simulates de-
layed ACKs.

Figure 5 shows the result of this simulation. Att = 620
ms, cw exceedsbdp and the transfer makes the transition to
SC without inducing a dropped packet. Att = 1000 ms, cw
reachesss and the sender switches to congestion avoidance. Af-
ter that,cw grows as the square root of time. The gray line
labeled “cwpred” shows the values ofcw predicted by Equa-
tion 2. The maximum difference between the predicted values
and simulated values is 0.06%, which shows that the continu-
ous differential equation (Equation 1) is a good approximation
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Fig. 7. Self-clocking after a drop. SC can continue if there are enough packets
in queue.

of this packet-based system. It also shows that our simulator is
consistent withns, which suggests that our simplified model is
sufficient to describe the behaviors we are studying, and that our
simulator is a correct implementation of our model.

After t = 1000 ms, the queue does not grow because the
number of packets in flight is limited bylb, not cw. Therefore
this transfer will never induce a drop, and SC can continue in-
definitely.

E. The effect of dropped packets

To understand the effect of dropped packets, it is useful to
distinguish between endogenous and exogenous drops. Endoge-
nous drops are caused by the transfer itself, usually by filling the
bottleneck buffer. Exogenous drops are caused by cross traffic
or transmission errors.

To reach SC, a transfer needs enough buffer space to avoid
endogenous drops (see Section II-C) and enough luck to get
through Phase 1 without an exogenous drop. It takesbdp pack-
ets without a drop to reach self-clocking, so if the drop rateis
p and exogenous drops are independent, the chance of reaching
SC is(1−p)bdp. For example, ifbdp = 10 packets and the drop
rate is 5%, the chance of getting into SC is 60%. If drops come
in bursts, the probability of SC is higher—more transfers suffer
multiple drops, but more are spared altogether.

Generally, a transfer can stay in SC as long ascw doesn’t fall
below bdp long enough to drain the queue. Thus, the longer a
transfer has been in SC, and the higher the value ofss, the more
likely it is to withstand a small number of dropped packets.

Figure 7 shows a transfer that drops the 15th packet, which
is the earliest drop that allow the transfer to stay in SC. When
the third duplicate ACK reaches the sender,cw is cut from 19 to
9.5 packets, but there are enough packets in flight to allowcw to
reachbdp again before the queue drains.

As this example shows, a transfer in SC does not display the
behavior expected in AIMD congestion avoidance. Instead of
reducing its send rate when a drop is detected, a self-clocking
transfer only pauses long enough to reduce the queue, and then
resumes at the same send rate (actually slightly higher).
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Fig. 8. The effect of periodic drops.

F. The effect of periodic drops

As long as a transfer stays in SC, throughput is strictly
bandwidth-limited. But there is a wide range of conditions
in which transfers switch back and forth between congestion
avoidance and SC; to understand average throughput, we have
to take both into account. Two questions we can ask are
• What is the maximum drop rate that keeps a transfer in SC?
• When does bandwidth (as opposed to drop rate) have a limit-
ing effect on throughput?
We start by considering a path that drops everykth packet (in the
next section, we consider random drops). Givenk, we can find
the minimum value ofcw in steady state, which we calla—this
is the samea that appears as the initial condition in Equation 1.
Then we can compute the time it takes forcw(x) to recover
from a dropped packet; that is, the time to climb fromcw = a
to cw = 2a. Solving Equation 2 withcw = 2a yields

x = 3a2/2 (3)

In equilibrium,x = k and

a =
√

2k/3 (4)

Figure 8 shows how a transfer converges on this equilibrium.
The simulator drops the 30th packet and every 62nd packet
thereafter. The analysis predicts that the transfer will bein equi-
librium whena = (2k/3)1/2 = 6.43 packets. In the simulation,
the transfer converges ona = 6.40.

kmin is the minimum value ofk that keeps the transfer in
SC, which happens whena ≥ bdp. We findkmin by solving
√

2k/3 = bdp, which yieldskmin = 3bdp2/2. This is bad
news, because it means that asbdp increases, the drop rate re-
quired for SC decreases quickly. For example, ifbdp = 10
packets,kmin = 150 packets and the maximum drop rate is
pmax = 1/kmin = 0.67%.

However, as long as2a > bdp, the congestion window will
sometimes exceedbdp, and so the transfer will sometimes be
in SC. We can use this observation to compute steady state
throughput as a function of drop rate.

It is well known that in congestion avoidance, the average
steady-state throughput is proportional to1/

√
p [1][5][8], but
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Fig. 9. The transition from congestion avoidance to self-clocking after a drop.

this result is based on the assumption thatcw never exceedsbdp.
This assumption is only true whenk < 3bdp2/8. For larger
values ofk, we have to take into account bandwidth limitation
whencw > bdp. Thus, in the range3bdp2/8 ≤ k ≤ 3bdp2/2,
the average throughput depends on both the drop rate and the
bottleneck bandwidth.

To estimate this throughput, we start by considering a single
interval between drops. Given the initial congestion window
cw0 and the number of packets until the next drop,k, we can
compute the average throughput during the interval,th.

First, we need to know when the transition from congestion
avoidance to SC will occur; that is, whencw reachesbdp. Given
cw0, we solvecw(x) = bdp for kca which is the number of
ACKs the sender gets during the congestion avoidance phase.

kca = (bdp2 − cw2

0
)/2 (5)

Next we need to know how much time,tca, passes before the
sender getskca ACKs. To do that we estimate average through-
put while cw grows fromcw0 to bdp. In general, ascw grows
from cw0 to a given valuecw1, its average value is

cwavg =
1

k

∫ k

0

cw(x)dx =
2(cw3

1
− cw3

0
)

3(cw2

1
− cw2

0
)

(6)

Since we know that the transfer is in congestion avoidance dur-
ing this part of the interval, we expect the average throughput to
track cwavg, with one adjustment: sincecw is an upper bound
on the data in flight, and TCP tries to send maximum-size pack-
ets, the actual data in flight may be up to one packet less thancw,
and on average we expect it to be one-half packet less. There-
fore,

tca = bdp ∗ kca/(cwavg − 1/2) (7)

where the unit oftca is the transmission time of a packet at the
bottleneck1.

After the firstkca packets, the transfer is back in SC, so the
remaining time,tsc = k − kca. During the entire interval,k − 1

1Since we measure time in units oftt, it is convenient to equate expressions
of time and packets without multiplying the units explicitly.Strictly, the time
to transmitk packets at the bottleneck rate ist = k packets multiplied by (1
transmission time / packet); for simplicity we writet = k.
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Fig. 10. The effect of periodic drops on throughput.

packets are transmitted in total timet = tca+tsc. So the average
throughput in packets per rtt is

thavg = bw ∗ (k − 1)/(tca + tsc) (8)

Figure 9 shows a transfer withk = 62. It starts by dropping the
9th packet, chosen for purposes of illustration because it puts
the transfer into equilibrium immediately. The horizontalline
is at bdp = 10 packets; the vertical line shows the time when
the transfer gets back to SC as computed by Equation 7, so this
example is consistent with our analysis.

Sincekca is 29 packets andcwavg is 8.3 packets per rtt,tca is
37.4 (in multiples oftt). The time in SC,tsc, is 62 − 29 = 33
time units, sothavg is 43.3 packets/s. In the simulation, the
steady-state throughput is 43.0 packets/s, so this exampleis also
consistent with Equation 8.

Figure 10 shows that this analysis agrees with the simulation
over the relevant range ofk, from3bdp2/8 = 37.5 to3bdp2/2 =
150, which corresponds to drop rates from 2.7% to 0.7%. The
plateaus in the simulation results are due to the discreteness of
packets. Each simulation runs for 2000 packets and computes
the average throughput in steady state (from the fifth drop until
the end).

G. The effect of random drops

So far, we have been assuming periodic drops. In this sec-
tion, we extend our analysis to random drops and derive the rela-
tionship between throughput and drop rate in the domain where
transfers vacillate between SC and congestion avoidance.

Again, it is useful to think of a transfer as a series of intervals
between dropped packets. If the drop rate isp and we assume
that drops are uncorrelated, we can compute the distribution of
the interval lengths. For a given interval, if we know the initial
congestion windowcw0 and the interval length, we can compute
the final congestion windowcw1. This suggests an iterative pro-
cess for approximating the distribution ofcw, as observed at the
time of a dropped packet.

Given an estimate ofpdf(cw), we can generate an improved
estimate by the following procedure:
1. Choosecw0 from pdf .
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Fig. 11. Distribution ofcw as a function ofkavg . The analysis and simulation
show good agreement.

2. Choosek, the interval between drops, from a geometric dis-
tribution with parameterp andkavg = 1/p.
3. Computecw1 = (2k + cw2

0
)1/2.

Repeating these steps, the distribution of the computedcw1

forms an improved estimate ofpdf .
This process can be made more efficient by treating the values

of pdf as weights to be distributed over the improved estimate
pdf ′ according to the distribution ofk. Furthermore, we can
compute the distribution ofk implicitly by repeatedly dividing
pdf(cw) by p. Here is the algorithm:
update_pdf (p):

pdf’ = 0
for i in domain(pdf):

w = pdf[i]
cw0 = i / 2
apply_weight (w, cw0, p)

Given the initial estimatepdf , update pdf forms an im-
proved estimate,pdf ′, based on the drop ratep. The function
apply weight distributes the weightw over pdf’, given cw0

and the distribution ofk implied byp.
apply_weight (w, cw0, p):

for k in domain(pdf):
j = (int)(sqrt (2*k + cw0*cw0))
d = p * w
pdf’[j] += d
w -= d

To generate an initial estimate for the distribution ofcw, we
can use Equation 6 to compute the average congestion window
for a given drop rate,µ = (14/9)

√

2kavg/3. Then we use a
normal distribution with parametersµ andσ = µ/3 as the initial
estimate forpdf . Over the relevant range of drop rates, the up-
date algorithm converges after 2 iterations. Each iteration takes
time proportional ton2, wheren is the number of discrete values
in the domain ofpdf .

Figure 11 shows the computed distributions ofcw for a range
of kavg, along with the distribution ofcw from a simulation of
a long transfer (64000 packets). In general there is good agree-
ment.

The vertical line in the figure is atbdp = 10 packets. Even
whenk = 30 (p = 3%), cw0 > bdp more than a quarter of the
time, as indicated by the dashed line.Thus, bandwidth limi-
tation is relevant to TCP performance even when the drop
rate is relatively high.
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Fig. 12. The effect of random drops on throughput.

Next we compute the average throughput of a transfer with
a given distribution ofcw. In an interval between drops, if we
know the initial congestion window,cw0, and the number of
packets before the next drop,k, we can compute the duration
of the interval and average throughput during the interval (see
Section II-F). Then, since we know the distributions ofcw0 and
k, we can estimate the average throughput of a long transfer by
Monte Carlo simulation:

1. Choosecw0 from pdf(cw).
2. Choosek from the distribution of interval lengths.
3. Computeth andt using the technique in Section II-F.

The computed values ofth give us the distribution of through-
puts in each interval. In order to compute the time average, we
have to weight eachth by the duration of the interval,t. This
process can be made more efficient by the same algorithm we
used to estimatepdf(cw). It runs in time proportional tonm,
wheren is the number of discrete values forcw andm is the
number of discrete values forth.

We believe that this algorithm is equivalent to formulatinga
Markov model for the congestion window and solving the re-
sulting system numerically.

Figure 12 shows the computed throughput for a range of val-
ues ofkavg along with the measured throughput of a simulated
long transfer (64000 packets). Throughout the range, thereis
good agreement between the analysis and simulation.

This analysis doesn’t yield a simple relationship between
throughput and drop rate, but we can look for an empirical rela-
tionship. Previous results suggest thatth ∼ pβ , with β = −0.5.
To estimateβ, we took the results from Figure 12 and plotted
log(th) versuslog(p). Figure 13 shows the result with a piece-
wise linear fit estimated by least squares.

In the rangep = 1.8% to 5% (kavg = 20–56), the curve fits
a line withβ = −0.46 (R2 = 0.99), which is consistent with
the 1/

√
p heuristic. For lower drop rates,p = 0.6% to 1.8%

(kavg = 56–160), throughput is limited bybw and the curve
flattens, withβ = −0.15 (R2 = 0.95). Below p = 0.6%, the
throughput is essentiallybw. This relationship is qualitatively
similar to the one derived by Padhye et al. [10].
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Fig. 13. Throughput and drop rate on a log-log scale. For low drop rates,
th ∼ p−0.15.

H. The effect of delays

So far we have been ignoring the effect of cross traffic (ex-
cept in the form of exogenous drops). In this section, we con-
sider the effect of cross traffic at the non-bottleneck links. In the
next section we look at interactions among transfers that share a
bottleneck link.

In the model in Figure 2, queue delays at non-bottleneck links
appear as random variables:q1 is the total queue delay incurred
by ACKs on the path from receiver to sender;q2 is the delay
incurred by data packets between the sender and the bottleneck,
andq3 is the delay between the bottleneck and the receiver. At
each point in the path, FIFO order is maintained. If a packet
is delayed, subsequent packets are delayed enough to maintain
order. We assume that delays are uncorrelated (except at the
bottleneck, which is modeled explicitly), and that the queue de-
lay of ACKs on the return path are unrelated to the forward-path
queue at the bottleneck.

Figure 14 shows the effect ofq3, a delay between the bottle-
neck and the receiver. In this example, the 25th packet is delayed
by 300 ms. A delay at this point in the path halts the data stream
immediately; after a lag ofrtt/2, it halts the growth of the con-
gestion window, so the sender stops sending. After a longer lag,
the queue at the bottleneck starts to decline.

After the delayed packet, subsequent packets arrive in rapid
succession (limited by the bandwidth of the slowest link be-
tween the site of the delay and the receiver). The receiver is-
sues a flurry of ACKs, which causes the sender to issue a burst
of packets, which arrive in succession at the bottleneck. Ifthis
burst arrives before the queue is depleted, then self-clocking can
resume without any loss of throughput.

A delay in the ACK stream has a similar effect, except that
the arrival of packets at the receiver is not disrupted. A delay
between the sender and the bottleneck only disrupts the growth
of the queue.

I. Sharing with short transfers

Transfers with largess and lb can keep a lot of packets in
queue, which makes them more robust in the presence of delays
and exogenous drops, and increases their share of the bottleneck
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Fig. 15. Transition from slow start to queue sharing. The second transfer sees
long and increasing queue delays.

bandwidth. This is good for long transfers, as long as enough
buffer space is available, but it is bad for short transfers.

Persistent queues increase the effective latency of the net-
work, which increases the time for a transfer to get through
slow start. They also decrease the available buffer space, which
makes it less likely that a competing transfer will make the tran-
sition to SC without inducing a drop.

Figure 15 shows an example with two transfers, one with
rtt = 200 ms, the other withrtt = 300 ms, both withssi = 30.
The second transfer begins att = 1000 ms, after the first transfer
reaches SC and establishes a persistent queue.

For the second transfer, the initial latency is 668 ms, which
implies that there were 18 packets in queue when the initial
flight arrived at the bottleneck. Ascw2 expands, the queue in-
creases quickly, so the effective latencies of the next fourrounds
are 720, 740, 840 and 1040 ms.

The transfers reach steady state whencw2 = ss2 = 30. By
then,cw1 has grown to 37, so the first period in steady state is
20(30 + 37) = 1340 ms. After that, the period grows by 40 ms
per period. Initially, the proportion ofbw for the second transfer
is 30/(30 + 37) = 45%.

S R

RS

Fig. 16. Two transfers sharing a bottleneck.

This simulation also shows the effect short transfers have on
longer transfers. During slow start, a new transfer imposespe-
riodic delays on the existing transfer; in other words, the effect
of short transfers is the same as the effect ofq3, a random delay
between the bottleneck and the receiver (see Section II-H).

III. B ANDWIDTH SHARING

In this section we analyze the interactions of long transfers
sharing a bottleneck. Many TCP models assume that the mech-
anism of bandwidth sharing is the AIMD congestion avoid-
ance algorithm, and that transfers interact with each otherby
inducing dropped packets. But when the bottleneck buffer is
large enough, transfers share bandwidth by sharing buffer space.
Without inducing dropped packets, transfers can reach an equi-
librium in which the sum of their send rates isbw, the queue
at the bottleneck is constant, and the sum of their congestion
windows exceedsbdp indefinitely.

To investigate this behavior, we extend the model shown in
Figure 2 to include two (or more) transfers sharing a bottleneck,
as shown in Figure 16. We use the notationcwi, ssi andlbi to
refer to the congestion window, slow start threshold, and limit-
ing buffer of theith transfer, andrtti andbdpi to refer to the
round trip time and bandwidth-delay product of theith path.

Figure 17a shows a simulation of two transfers that start at
the same time, withss1 = ss2 = 80 packets. The lines labeled
“data” and “data2” show the total data received by each transfer,
in units of packets. The lines labeled “queue” and “queue2”
show the number of packets each transfer has in the bottleneck
buffer. The marks at the top of the figure show when packets
are sent; there are two rows, one for each sender. For clarity, the
congestion windows are not shown.

During Phase 1, the transfers tend to repel each other, sending
packets in alternating bursts rather than interleaving; this is the
packet clustering described by Zhang et al. [2]. Transfers can
be divided into a series of intervals where each transfer sends
cwi packets per interval. Thus, the duration of each interval is
tt(cw1 + cw2).

When cwi > ssi, the senders switch to congestion avoid-
ance. During each subsequent interval, each congestion window
grows by 1 packet. By the same analysis as in Section II-B, we
can show that the congestion windows and queue are bounded
by the square root of time, as in Phase 3 (see Section II-B).
Whencwi > lbi for all transfers, the queue stops growing, but
thecwi continue to grow as in Phase 4.

These observations lead us to define a transfer state called
QS, for “queue sharing.”The definitive characteristic of QS
is that two or more transfers share a bottleneck and the sum
of their congestion windows exceedsbdp.
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A. Unequal sharing

Previously we have usedrtt to denote the base round trip time
for a path, excluding queue delays. In this section we introduce
ertt to denote the effective rtt including queue delays, and use
brtt for base rtt.

When transfers share a bottleneck through AIMD congestion
avoidance, they share unfairly. Specifically, each transfer gets
a share of the bandwidth in proportion to1/ertt. Floyd and
Jacobson show that the cause of this bias is the additive increase
algorithm; after a dropped packet, the long-rtt transfer isslower
to claim its share of the available bandwidth [23].

But this heuristic only applies when throughput is congestion-
limited. In QS, throughput is bandwidth-limited and the propor-
tion of sharing is determined byss and lb, and depends only
weakly onertt andp.

To demonstrate this effect, Figure 17b shows a transfer with
brtt = 100 ms sharing a bottleneck with a transfer withbrtt =
200 ms. The values ofssi are chosen so that in steady state the
two transfers have the same number of packets in queue. Att =
4000, the queue delay at the bottleneck is 400 ms, so theertti
are 500 ms and 600 ms, respectively. By the1/ertt heuristic,
the long-rtt transfer should get 45% of the bottleneck bandwidth.
By the queue sharing heuristic, we expect the transfers to share
equally, and they do.

On the other hand, if one transfer has a higherss, it tends
to keep more packets in queue and get a higher proportion of
bw. Figure 17c shows two transfers with the samebrtt; by the
1/ertt heuristic, they should share equally. But in this case the
values ofssi are chosen so that the first transfer keeps more
packets in queue. By the queue sharing heuristic, the transfer
with largerss should get 57% of the bottleneck bandwidth; in
the simulation it gets 58%.

This analysis also applies when more than two transfers share
a bottleneck, and in the presence of random delays. Figure 17d
shows three transfers with the samertt andssi = 30, 15, and
5 packets. This example includes random delays chosen from
a lognormal distribution with parametersζ = 4 andσ = 0.6.
The delays cause the transfers to interleave rather than alter-
nate, but the effective throughput of the transfers is as expected.
Our analysis predicts that the transfer withssi = 30 should get
30/(30 + 15 + 5) = 60% ofbw; in the simulation it gets 56%.

In Phase 4, the number of packets in flight is limited bylbi,
so queue residency is betweenlbi − bdpi andlbi, depending on
packet spacing. Again, we can use the expected queue residency
to predict the proportion of queueing.

Another characteristic of QS is that transfers are fast to dis-
cover available capacity. Under AIMD congestion avoidance,
transfers increase their send rate linearly, so when a transfer
through a bottleneck ends, it can take many rtts for the remain-
ing transfers to claim the available capacity. In QS, the remain-
ing transfers use the available capacity immediately, as shown
in Figures 17b and 17c.

B. The effect of delayed ACKs

In this section we usens to validate our model by compar-
ison with a more detailed simulation and to investigate the ef-
fect of delayed ACKs. We extend the configuration in Figure 6
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Fig. 17. Self-clocking with multiple transfers: (a) queue sharing, (b) transfers
with differentrtt, (c) transfers with differentss, (d) transfers with different
ss.
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Fig. 18. A transfer that implements delayed ACKs sharing a bottleneck with
one that doesn’t (ns simulation).

to includen TCP senders sharing the bottleneck link, with rtts
varying from 40 – 120 ms.

Simulating this model with and without delayed ACKs, we
see no effect on the qualitative results from the previous section:
• Relativeertt for different senders has only a weak effect on
the proportion of sharing.
• In Phase 3, a sender with a largerss gets a larger share ofbw.
• In Phase 4, a sender-receiver pair with a largerlb gets a larger
share ofbw.
ns also allows us to simulate a sender that implements delayed
ACKs sharing a bottleneck with one that doesn’t. Figure 18
shows two transfers withbrtt = 60 ms,bdp = 10 packets, and
ss = lb = 30 packets. One of the receivers implements delayed
ACKs; the other doesn’t. As expected, the transfer with delayed
ACKs takes longer to get through Phase 1, but in QS the trans-
fers sharebw equally, at least approximately. Interestingly, the
periodic structure is more complex; instead of strict alternation,
there is more interleaving of packets.

We conclude that delayed ACKs have no substantial effect on
the qualitative behavior of QS, but in some cases they modify
the pattern of interleaved transmission.

C. The effect of random drops

In this section we examine the effect of exogenous drops on
bandwidth sharing. Figure 19 shows the result of a simulation
with brtt1 = 100 ms and values ofbrtt2 from 30–300 ms. The
figure plots the proportion of sharing,th1/(th1 + th2), versus
rtt2 for several values ofp, and compares the result to the pro-
portion of sharing predicted by the1/ertt heuristic. We ob-
serve:
• For high drop rates, a transfer with a shortertt gets a greater
share ofbw, in accordance with the1/ertt heuristic.
• In a range of moderate drop rates (0.5 – 4% in the example),
TCP shares more fairly than the1/ertt model predicts, espe-
cially in the left side of the figure wherebdp2 is small.
• At low drop rates (less than 0.5% in the example), bandwidth
sharing is nearly independent ofertt.
In summary, when the drop rate andbdp are low enough to al-
low QS, the proportion of sharing depends primarily on queue
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Fig. 19. With exogenous drops, throughput depends onrtt, but only indirectly.

residency, and only weakly onertt. In turn, queue residency
depends strongly onss andlb. In Section IV-B we show mea-
surements that demonstrate these effects in the Internet.

IV. M EASUREMENTS

Our analysis and simulations are based on the assumption
that the bottleneck buffer is large enough, and the drop ratelow
enough, to allow SC. How often is this true in the current Inter-
net?

To answer that question, we need a sample of Internet paths.
Our first sample includes paths from a single client (Client 1) to
a set of geographically-distributed web servers. To generate this
set, we used traces from the IRCache Project (http://www.
ircache.net/) to find large files available from servers busy
enough not to notice our measurements. Looking at one day
of traces from 10 proxy servers, we identified 83 frequently-
accessed files that were at least 100,000 bytes. We downloaded
each file 10 times with an average of 100 seconds (exponentially
distributed) between them. The receive buffer was set to 1 MB,
so we expect the limiting buffer to be at the sender.

Next we classified each path according to which state most
transfers were in. We did this by a combination of statistical
techniques and visual examination. These techniques are admit-
tedly ad hoc, but our goal is not to create an automated pro-
cess for classifying TCP connections (see Section IV-C), but
to demonstrate the existence and estimate the prevalence ofthe
phenomena predicted by our model.

We use statistical heuristics similar to those in T-RAT [24]
to identify flights of packets and estimatertt. We have sev-
eral measurements for each path, and each measurement yields

Client Median Median Median 90%ile
rtt, ms bw, Mbps bdp, KB bdp, KB

1 86.3 2.77 21.6 57.0
2 82.9 7.95 56.3 154
3 70.3 23.2 141 572

TABLE I

ESTIMATED PATH PARAMETERS.
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Fig. 20. Timing charts for paths with different steady-statebehavior.

several estimates ofrtt, so we use the minimum of all measure-
ments to estimate the basertt of the path.

To estimate bottleneck bandwidth we use basic packet pair
techniques [25]. In general these techniques are not highlyreli-
able [26], but because we observe several long transfers on each
path, we are able to filter aggressively, which improves the con-
sistency of the results, and may improve the accuracy [27]. In
any case, we only need a coarse estimate for our purposes.

The first line of Table I summarizes these estimates for the
83 paths we observed from Client 1. The estimatedbdp is the
product of the estimatedrtt andbw. This client is connected
to the Internet by 2 T1 lines with a total effective bandwidthof
roughly 2.8 Mbps. In many cases the T1s are the bottleneck, so
this sample of paths is skewed toward relatively lowbw andbdp.

With these estimates in hand, we examine the timing charts
and classify each transfer using the following criteria:
1. If packets arrive in identifiable flights and the number of
packets in successive flights roughly doubles, we conclude that a
transfer is in Phase 1. If the transfer ends in Phase 1, we classify
it as opportunity-limited (OL), which means thatcw never had
the opportunity to exceedbdp. Figure 20a shows an example in
which all ten transfers are OL.

2. If a transfer leaves Phase 1, and the rest of the packets ar-
rive in identifiable flights, and the size of the flights is roughly
constant, we classify the transfer as buffer-limited (BL),which
means that the number of packets in flight is limited by the send
or receive buffer. Figure 20b shows an example in which all ten
transfers are BL.
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Fig. 21. Timing charts for paths with different steady-statebehavior.
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3. If a transfer leaves Phase 1 and the rest of the packets arrive
at roughly equal intervals without identifiable flights, andif the
modal interarrival time is within a factor of two of a packet trans-
fer time at the estimatedbw, we classify the transfer as SC (self-
clocking). Figure 21a shows a path where all transfers reachSC
after 4 rounds of slow start. We confirm that these transfers are
not OL because the last “flight” is more than double its prede-
cessor, and much larger than the estimatedbdp.

4. The received data curve in these figures is the integral of the
receive rate, so the AI phase of congestion avoidance appears as
a parabola. When a drop occurs, there is usually a visible delay
and, when the transfer resumes, the slope is roughly halved.If
the data curve shows linear acceleration during additive increase
and at least one point of inflection at a multiplicative decrease
we classify it as CA (congestion avoidance). Figure 21b shows
a path where several transfers demonstrate the characteristic be-
havior of AIMD congestion avoidance.

Our classifications are deliberately conservative in the sense
that we only classify a transfer if it clearly demonstrates char-
acteristic behavior of OL, BL, SC or CA. Transfers that do not
fit neatly into these categories are unclassified (labeled?? in
Table II). Unclassified transfers are most likely to be CA or QS,
and unlikely to be SC.

Several measurements in this dataset show characteristicsof
queue sharing. Figure 21c shows an example where arrivals can
often be divided into rounds, but there is no consistent pattern in
the number of packets per round. Several of these transfers re-
semble Figure 17d, so they may be examples of QS, but we don’t
have enough information in these measurements to confirm that.
In Figure 21d, most transfers are in SC, but two transfers ap-
pear to share the bottleneck with another, unobserved, transfer.
In both cases, the transfers revert to SC when the competing
transfer completes, but there is no clear-cut periodic behavior,
so again we hesitate to call this QS. In the next section, we de-
scribe a set of measurements specifically designed to identify
queue sharing.

Table II summarizes our classifications. On 61 of the 83 paths
(73%), the majority of the 10 transfers are in SC. There are only
7 paths where CA is the most common state. Ten paths are BL,
two are OL, and two are unclassified. One path is application-
limited (AL); according to the HTML header, the server is run-
ningthttpd, which limits transfer rates.

We repeated the measurements from Client 2, which is con-
nected to the Internet by cable modem. The throughput for many
transfers is higher (near 8 Mbps), so this sample includes paths
with higherbdp. We expect the prevalence of SC to be lower,
and it is, but not by much. On 54 of the 88 paths (61%) SC is
the most common state.

Client SC CA BL OL ?? AL Total
1 61 7 10 2 2 1 83
2 54 6 11 9 7 1 88
3 24 24 44 17 24 0 133

TABLE II

PATH CLASSIFICATIONS.
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Fig. 22. Packet interarrival times (di) for 10 transfers during the transition to
SC.

Later we made a set of measurements from Client 3, which
is on the campus of a West Coast university with multiple con-
nections to the Internet, including a T1, a DS-3 (45 Mbps) and
two Gigabit Ethernets (1 Gbps each). Using new data from IR-
Cache, we identified 133 large files available from busy servers.
Since we expected many high-bdp paths, we increased the size
limit to 2000 KB. In this dataset, we find a lower prevalence of
SC and more CA. Still, on 24 out of 133 paths (18%), SC is the
most common state.

We conclude that the self-clocking behaviors demonstratedin
our model exist in the Internet, and that SC is a common state
for long TCP transfers, at least for some clients.

A. Validation of SC

Although we don’t measure the queue orcw during our mea-
surements, we can confirm that they demonstrate self-clocking
by examining the time between packet arrivals more carefully.

If the sender is in slow start, and the receiver ACKs every
packet, then the ACK of packeti will cause the sender to trans-
mit packets2i and2i + 1. If ai is the arrival time of packeti,
then

di = a2i − ai = rtt + q · tt (9)

whereq is the number of packets in queue when packeti arrives
at the bottleneck, andq · tt is the total transmission time of those
packets.

In Figure 22, the thin lines showdi for 10 transfers from the
same server. The black line shows the packet spacing we ex-
pect if the queue at the bottleneck grows as in our simulation
of self-clocking. In some cases the actual interarrival time is
longer than predicted, probably due to cross traffic, but it is al-
most never shorter. This result shows that for transfers that ap-
pear to be in SC, the spacing between arrivals is consistent with
the behavior of the queue we expect during SC.

B. Bandwidth sharing

To investigate the prevalence of queue sharing, we initiated si-
multaneous transfers from pairs of servers to the same client. We
chose Client 1 because we have determined that self-clocking is
common for transfers to this client.
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Fig. 23. Measurements showing queue sharing: (a) transfers from different
sites with the samertt, (b) transfers with differentrtt, (c) transfers with
the samertt where one transfer is delayed (d) transfers with different send
buffers.

We identified 23 web servers with files larger than 300 KB,
and generated 100 test cases by choosing two servers at random
and initiating two downloads in rapid succession. As in the pre-
vious experiment, we use statistical heuristics to identify breaks
between flights and estimatertt, and packet pair techniques to
estimatebw andbdp for each path. We then apply the following
classification criteria:
1. If the transfers don’t overlap because one is delayed, we
know that they did not share the bottleneck. This happens in
3 cases.
2. When one transfer ends, if the throughput of the other trans-
fer is unaffected, we conclude that the transfers were not limited
by the same bottleneck link. This happens in 6 cases.
3. If packets arrive in alternating flights, the size of the flights
increases linearly or stays constant, and when one of the trans-
fers ends the other is able to use the available bandwidth imme-
diately, we classify the measurement as QS.
4. If either transfer shows the characteristic curvature and in-
flection points of AIMD congestion avoidance, we classify the
measurement as CA.
Based on this classification, there are 91 cases where we suc-
ceeded in inducing simultaneous transfers that share a bottle-
neck. In 68 of these cases (75%) the timing charts show be-
haviors characteristic of queue sharing. Figure 23 shows several
examples.

In another 11 cases the periodic structure is not clear, but there
appears to be queue sharing at the bottleneck, because when the
first transfer ends, the throughput of the second increases imme-
diately. In the remaining 12 cases, one of the transfers is inCA,
so that when the first transfer ends, the second accelerates grad-
ually. These results suggest that in network paths where SC is
common, QS is a prevalent mode of bandwidth sharing for long
transfers.

Looking at specific cases, we see support for several of the
behaviors predicted by our model. Figure 23a shows one of the
clearest examples of queue sharing between two servers with
roughly the samertt. This measurement is remarkably similar
to the simulation output in Figure 17a.

Figure 23b shows two servers with rtts that differ by a factor
of 5 (17 ms and 86 ms). The transfer on the long-rtt path takes
longer to get through slow start, but in steady state the trans-
fers share bandwidth almost equally, just as in the simulation in
Figure 17b.

Conversely, Figure 23c shows two servers with the same rtt.
One of the transfers gets a head start and occupies the queue,so
the second transfer takes longer to get through Phase 1. When
the first transfer ends, the second transfer is able to claim the
available bandwidth immediately, as our model predicts.

In many of these measurements, the arrival pattern shows
the characteristic scalloped shape that our model predictswhen
paths with differentrtt share a bottleneck, or when one starts
later than another.

Figure 23d shows a case where the second transfer to start gets
higher throughput in steady state, despite a longerrtt. The most
likely explanation is that the queue residency for the first transfer
is limited by the send buffer. In our previous measurements,we
observed buffer-limited transfers from the same server, which
confirms that this server provides relatively small send buffers.
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These examples show that under some conditions (lowbdp
and lowp) bandwidth sharing is determined byss and lb, and
depends only weakly onrtt.

C. Related work

Zhang et al. use packet-level information and a tool called T-
RAT to identify the limiting factor for a large dataset of TCP
connections [24]. They find that a majority of transfers are
opportunity-limited; in our measurements, we see a lower per-
centage because we deliberately induce long transfers. Of the re-
maining connections, they find that the majority are application-
limited; again, we see a lower percentage because our measure-
ments are based on large file transfers, which are less likelyto
be application-limited.

They characterize many of the remaining connections as
congestion-limited or buffer-limited, but this classification is
based on statistical heuristics that break transfers into apparent
flights. For transfers in SC there is often no apparent break be-
tween flights, and apparent breaks might be due to cross-traffic;
for transfers in QS, apparent breaks are due to interactionsbe-
tween transfers, and unrelated tortt. Therefore it is not clear
how T-RAT would classify a connection in SC or QS. Accord-
ing to our interpretation of their heuristics, some connections
in SC might be misclassified as congestion-limited, and some
connections in QS might be misclassified as buffer-limited.

Jaiswal et al. use passive measurements to characterize TCP
connections [28]. Their heuristics are also based on the assump-
tion that the packets of a TCP connection can be divided into
flights, and that there is no overlap between the arrival of ac-
knowledgments and the transmission of additional data. Butthis
overlap is very common in SC. According to our interpretation
of their heuristics, some connections in SC and QS might be
misclassified as application-limited.

V. CONCLUSIONS

We have used a simple network model to investigate the be-
havior of TCP when the buffer at the bottleneck link is larger
than the bandwidth-delay product (bdp) of the path. We iden-
tify three phases that can occur in the transition from slow start
to congestion avoidance. Our analysis explains some previous
observations, including sub-linear growth of the congestion win-
dow, and predicts several new behaviors. We present measure-
ments that show that these behaviors occur in the Internet. Our
analysis and observations have several implications:
• Under some conditions (large buffers, low drop rates), TCP
connections can enter a steady state, which we call SC, in which
the congestion window can exceedbdp indefinitely. Transfers
can transition from slow start to SC without inducing a drop.
• We derive the size of the bottleneck buffer,bb, needed to sup-
port SC. In the worst case, SC may requirebb > lb, wherelb is
the smaller of the send and receive buffers. But in the best case,
whenlb = bdp, SC is possible with minimalbb.
• We derive the range of drop rates in which self-clocking has
a significant effect on performance. We can summarize these
results by defining a parameterβ = p · bdp2 that characterizes
a network path with drop ratep and bandwidth-delay product
bdp (measured in packets). Ifβ < 2/3, transfers can stay in
SC indefinitely. If2/3 < β < 8/3, transfers will sometimes be

in SC. Whenβ > 8/3, transfers stay in congestion avoidance
(CA). These results are based on periodic drops; with random
correlated drops, the range where connections vacillate between
SC and CA is wider.
• We present an analysis of TCP performance in the domain
where transfers are sometimes limited by the congestion win-
dow and sometimes by the bottleneck bandwidth, and verify this
analysis by comparison withns simulations.
• When multiple transfers share a bottleneck, they can enter
a steady state, which we call QS for “queue sharing”. In QS,
the sum of the congestion windows can exceedbdp indefinitely
without inducing drops.
• Transfers in SC and QS may not respond correctly to a
dropped packet; after a pause, they resume sending at a slightly
higher rate.
• When transfers in QS share bandwidth, the proportion of
sharing depends strongly onssthresh and the send/receive
buffers, and only weakly onrtt. Under these conditions, TCP
does not obey the1/

√
p and1/rtt heuristics, which are the basis

of TCP-friendly algorithms [29][30]. Thus, TCP is not always
TCP-friendly.

Some of the behaviors we observed have been described be-
fore, but they are often omitted from models of TCP. For exam-
ple, many models of TCP performance, and heuristics for char-
acterizing TCP behavior, are based on the assumption that most
connections send packets in discrete flights, where the timebe-
tween flights is roughlyrtt. For transfers in SC, there are often
no breaks between flights, and for transfers in QS, the time be-
tween flights depends on the congestion windows and transfer
time at the bottleneck, notrtt.

On the other hand, our observations suggest ways to improve
TCP. In SC, the congestion window can be much greater than
bdp, making it ineffective as an estimate of available capacity.
Some implementations address this problem by boundingcw
with a system-level parameter (likecwnd max), but if this pa-
rameter is too low, it limits performance, and if it is too high it is
irrelevant. It may be desirable set this bound dynamically,either
by using packet pair techniques to estimate the bottleneck band-
width or by using sub-linear growth in the congestion window
as a signal thatcw > bdp.

In some conditions the initial value ofssthresh and the
size of the send and receive buffers have a strong effect on TCP
queue behavior in steady state. It may be desirable to adjust
these values dynamically. Several projects have tried to measure
bdp and setss accordingly [20][31][32] [21][33].

In future work, we would like to investigate the implications
of this model for network provisioning and queue management.
A perpetual problem with TCP is that large buffers allow persis-
tent queues, which increase the apparent latency of the network,
but smaller buffers reduce the ability of the network to handle
bursts, which increases the drop rate. Our analysis complicates
this picture, showing that the queue behavior of transfers is dif-
ferent in SC, QS and congestion avoidance. Thus, optimal buffer
sizes may depend on the prevalence of SC and QS. Recently Ap-
penzeller et al. revisited buffer sizing for TCP flows [18]. They
assume that long flows are in AIMD congestion avoidance, so
it is not clear whether their results apply when SC and QS are
prevalent.



15

REFERENCES

[1] S. Floyd, “Connections with multiple congested gatewaysin packet-
switched networks, Part 1: One-way traffic,”ACM Computer Communi-
cation Review, vol. 21, no. 5, pp. 30–47, Oct. 1991.

[2] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics of
a congestion control algorithm: The effects of two-way traffic,” in SIG-
COMM, 1991, pp. 133–147.

[3] T. Lakshman and U. Madhow, “The performance of TCP/IP for networks
with high bandwidth-delay products and random loss,”IEEE/ACM Trans-
actions on Networking, vol. 5, no. 3, pp. 336–350, July 1997.

[4] T. V. Lakshman, U. Madhow, and B. Suter, “Window-based error recov-
ery and flow control with a slow acknowledgement channel: A study of
TCP/IP performance,” inINFOCOM (3), 1997, pp. 1199–1209.

[5] T. Ott, J. Kemperman, and M. Mathis, “The stationary behavior of ideal
TCP congestion avoidance,” August 1996, unpublished manuscript.

[6] M. Mathis, J. Semke, and J. Mahdavi, “The macroscopic behavior of the
TCP congestion avoidance algorithm,”Computer Communications Re-
view, vol. 27, no. 3, 1997.

[7] V. Misra, W. Gong, and D. Towsley, “Stochastic differential equation
modeling and analysis of TCP windowsize behavior,” University of Mas-
sachusetts, Tech. Rep. ECE-TR-CCS-99-10-01, 1999.

[8] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, “Modeling TCP through-
put: A simple model and its empirical validation,” inSIGCOMM, 1998,
pp. 303–314.

[9] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP Reno
congestion avoidance and control,” University of Massachusetts, Tech.
Rep. CMPSCI 99-02, 1999.

[10] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, “Modeling TCP Reno
performance: A simple model and its empirical validation,”IEEE/ACM
Transations on Networking, vol. 8, no. 2, pp. 133–145, April 2000.

[11] E. Altman, K. Avrachenkov, and C. Barakat, “A stochasticmodel of
TCP/IP with stationary random losses,” inSIGCOMM, 2000.

[12] ——, “TCP in the presence of bursty losses,”Performance Evaluation,
vol. 42, pp. 129–147, 2001.

[13] E. Altman, K. Avrachenkov, C. Barakat, and R. N. nez Queija, “TCP mod-
eling in the presence of nonlinear window growth,” INRIA, Tech. Rep.
RR-4312, Novemeber 2001.

[14] A. Misra and T. J. Ott, “The window distribution of idealized TCP con-
gestion avoidance with variable packet loss,” inINFOCOM (3), 1999, pp.
1564–1572.

[15] F. Baccelli and D. Hong, “The AIMD model for TCP sessions sharing
a common router,” inProceedings of the Conference on Communication,
Control and Computing, October 2001.

[16] V. Jacobson, “Congestion avoidance and control,” inSIGCOMM, 1988,
pp. 314–329.

[17] “The ns-2 network simulator,” http://www.isi.edu/nsnam/ns, 2005.
[18] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in

SIGCOMM, 2004, pp. 281–292.
[19] W. Noureddine and F. Tobagi, “The transmission control protocol,” Stan-

ford University, Tech. Rep., July 2002.
[20] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion

avoidance on a global internet,”IEEE Journal on Selected Areas
in Communications, vol. 13, no. 8, pp. 1465–1480, 1995. [Online].
Available: citeseer.nj.nec.com/brakmo95tcp.html

[21] M. Allman and V. Paxson, “On estimating end-to-end network path
properties,” in SIGCOMM, 1999, pp. 263–274. [Online]. Available:
citeseer.nj.nec.com/allman99estimating.html

[22] C. Barakat and E. Altman, “Performance of short TCP transfers,” inNET-
WORKING, ser. Lecture Notes in Computer Science, vol. 1815. Springer,
2000, pp. 567–579.

[23] S. Floyd and V. Jacobson, “Traffic phase effects in packet-switched gate-
ways,”Journal of Internetworking: Practice and Experience, vol. 3, no. 3,
pp. 115–156, September 1992.

[24] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteristics
and origins of Internet flow rates,” inSIGCOMM, 2002.

[25] S. Keshav, “A control-theoretic approach to flow control,” in SIG-
COMM, 1991, pp. 3–15. [Online]. Available: citeseer.nj.nec.com/
keshav91controltheoretic.html

[26] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet dispersion techniques
and capacity estimation,”IEEE/ACM Transactions on Networking,
December 2004. [Online]. Available: citeseer.nj.nec.com/513517.html

[27] A. Downey, “An empirical model of TCP performance,” Olin College,
Tech. Rep. TR-2003-001, August 2003.

[28] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring
TCP connection characteristics through passive measurements,” in IEEE
INFOCOM, 2004.

[29] J. Mahdavi and S. Floyd, “TCP-friendly unicast rate-based flow control,”
http://www.psc.edu/networking/papers/tcpfriendly.html, 1997.

[30] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, “A model-based TCP-
friendly rate control protocol,” University of Massachusetts, Tech. Rep.
CMPSCI 98-04, 1998.

[31] J. C. Hoe, “Improving the start-up behavior of a congestion control
scheme for TCP,” inSIGCOMM, 1996, pp. 270–280. [Online]. Available:
citeseer.nj.nec.com/hoe96improving.html

[32] M. Aron and P. Druschel, “TCP: Improving startup dynamicsby
adaptive timers and congestion control,” Dept. of Computer Science, Rice
University, Tech. Rep., 1998. [Online]. Available: citeseer.nj.nec.com/
aron98tcp.html

[33] C. Partridge, D. Rockwell, M. Allman, R. Krishnan, and J.Sterbenz, “A
swifter start for TCP,” BBN, Tech. Rep. 8339, March 2002.


