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Abstract— demonstrate queue sharing. We conclude that the condigéens

We propose a simple queueing model for TCP transfers sharing bot-  quired by the model are common in the current Internet, atlea
tleneck link and examine its behavior when the buffer at the lottleneck is on some paths

large compared to the bandwidth-delay product. This model gplains some ) L . . .
behaviors of TCP that have already been observed, and predis other be- The primary contribution of this work is that it expands the

haviors that are new. We present measurements that demonstte these scope of existing models to include a domain that is common
behaviors in the current Internet. in the current Internet but previously ignored. In this dama
long TCP transfers demonstrate some undesirable behaviors
I. INTRODUCTION they tend to induce persistent queues, and in some cases they
ergpond to a dropped packet by pausing and then resuming at a
ightly higher send rate, rather than cutting the send @tker
ehaviors we observed are not necessarily bad, but diffdoen
example, in this domain TCP does not obey tig/p and1/rtt
heuristics that characterize AIMD congestion avoidandeesE
Rpservations improve our understanding of TCP performance

Researchers have proposed many models of TCP pen‘r
mance, most of which have focused on the steady-st%
behavior of long TCP transfers [1][2][3][4][5][6][7][8H]
[10][11][12][13][14][15]. Most of this work has been based
sometimes implicitly, on the assumption that the avail&biléer

capacity in the network is small compared to the bandwidt - X
delay productidp) for most paths. and suggest opportunities for improvement.

This paper investigates the behavior of TCP when buffer Ca_Sectlon 2 presents our network model and derives the require

pacity is large compared falp and the exogenous drop rate iSments for a transfer to get mtp and stay in SC. In Sectlc_)n 3
low. By simulation and analysis, we find: we extend the model to describe the steady-state behavior of

Duri | tart. th " ind . multiple transfers sharing a bottleneck link. Section 4spris
s buring slow start, the congestion win 9@() INCIEAses €X- easurements we made to validate the model. In Section 5 we
ponentially only untilew > bdp. After that it increases linearly

I ; discuss some implications of our findings for TCP perforneanc
until it exceeds the slow start threshold). After that, it grows b ¢ P

th L of This derivati lai b We use the following notation:
a? Ef_quare roe\nﬁ |me.t dlt? slrtlva |ontex|p iTS obsienva cw  congestion window (packets)
of sub-iinéar growth reported by Aliman & a_.[ ]'. ss slow start threshold (packets)
« Long transfers can enter a steady state in whighgrows P
. . : . rtt round trip time (seconds)
without inducing dropped packets. We call this state SC, for

sself-clocking” Self-clocking i ket t sioat tt transfer time per packet (seconds)
self-clocking.” Self-clocking is a packet transmissioattern, bw  bottleneck bandwidth (packets/s)

identified by Jacobson [16], in which the send rate is limigd bd bandwidth del oduct ket
the receipt of ACKs, rather than by the send window. We derive pr sizr(]e glrecei\?eagugfrer (l:)(;c(lf;g)e s)
the conditions that make SQ poss!ble and describe transitio b size of send buffer (packets)
between slow start, congestion avoidance and SC. - .

L ¢ hat sh bott] K el b limiting buffer = min(sb, rb)
» Long transfers that share a bottleneck can enter a steay sta bh bottleneck buffer (packets)
in which they tend to transmit periodically, their congestwin- k packets between drops
dows grow, and the proportion of sharing is independent ®f th

S . P drop rate (%)
base round trip times of the pathg#). We call this state QS, h effective throughput (packets/s)

for “queue sharing”, and derive the relationships betwegethe mss maximum segment size (bytes)
senq and receive buffers, the period length and the prapoofi In common use, “round trip time” and “bandwidth-delay
sharing. o _product” are ambiguous; they may or may not include queue
We focus on low degrees of multlplexmg.on the assumption tr@days_ In this paper;tt is the minimum round trip time of a
for many Internet paths, the bottleneck I|r_1ks are near tlge_ad path, sometimes called “bas&”. Similarly, the “delay” inbdp
notin the core. Ift'he' number of hosts behind a bottleneais | ;s the round trip time excluding queue delays. By these defini
and the great majority of transfers are short, then the nuwibe tions, rtt andbdp are fixed for a given path and do not depend
long transfers at a given bottleneck at a given time is likelpe ., current traffic.
low.

To validate the model, we observe long (100—2000 KB) trans- Il. SELF-CLOCKING
fers between three client sites and more than 200 Web servers .. . def if-clocki d imol ;
On the majority of paths, we find at least one transfer that ex- nk IS jelct'og we eth:L- th —ctoc 'F‘t.g ar} use la S|mtp (tatne i
hibits self-clocking behavior, and on low-bdp paths we fimakt work mocet to demonstrate the transition from siow start to a

. : If-clocking steady state (SC). In turn, we consider tliecef
SC is the most common state. We also observe simultafe- oo ’
a connection in SC of the slow start threshalsl, and the

ous transfers that share a bottleneck, and find many cases 2 .
y limiting send/receive bufferp; delayed ACKs, dropped pack-
Olin College of Engineering, Needham, MA 02492, email€1S, and sharing with short transfers. In Section I, wel@xp
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Fig. 2. A simple model of a network path.

that the transmission time on other links is small&). Since
we are considering long transfers, data packets are prestame
bemss bytes. ACKs are presumed to be small. The simulator
is available fromal | endowney. coni research/tcp. In
FH oo lolo]lo addition to our own simulator, we also use the network simula
torns- 2 [17] to validate our simulations and to investigate the

effects of delayed ACKs (see Sections II-D and 11I-B).

%o\o\o\o\o :

Figure 3 shows the result of a simulation with= 20 ms,

Fig. 1. Transition from slow start to self-clocking. er = 100 ms,e; = 30 ms, andes = 50 ms. Sincett is 20 ms
andrtt is 200 ms,bdp is 10 packets. The line labeled “data”
shows the total data received versus time, “cw” shows the con

A. Transitionto SC gestion window, and “queue” shows the queue, all measured in
aackets. The marks at the top of the figure show when packets
re sent (if two more more packets are sent back-to-back, the

g}ﬂrks are stacked vertically). We show total data rathem tha
end rate because in a window-based system, send rate is not
ell defined. We could plot the average send rate over an-inter
val, but this averaging would obscure important featurasahe
clearly visible if we plot total data.

Givenbdp and the initial congestion window, we define* . o .
; . During slow start, packets arrive in discrete rounds, Wt t
as the largest slow start congestion window smaller tian In number of packets per round increasing geometrically. rAfte
the examplecw* = 8 packets. After the sender transmits these P P 99 Y-

8 packets. we define ds— 0 the moment before the first ACK ¢ > bdp, packets arrive at the bottleneck rate, so the receiver
regches tr’1e sender ACKs data at the bottleneck rate and grows only linearly.
: . . At this point, the transfer is in a self-clocking state we ab-
As each ACK arrives, the sender increasesand transmits

; ket ¢ I the iust-ack ledaed dat q breviate SCThe definitive characteristic of SC is thatcw >
WO packets, one 1o replace the just-acknowledged dalafe 8dp. The effect of SC is that the send rate is limited by the re-
to fill the just-expanded congestion window. Thustby 8, cw

is 16 and 8 packets have accumulated in queue. During the nce|pt of ACKs, which reflect the bottleneck bandwidth, rathe

two time steps, the queue drains slightly, and then the cmnng%%En by the send window.
tion reaches self-clocking. During each time step, the esngB. The effect of ss and Ib

tion window increases by 1, the sender transmits 2 pachets, t In th . " : the effectssfandib. |
receiver gets 1 packet, and the queue grows by 1 packet. urj f the previous section, We Ignore the etectselandio. in

each rttcw increases bydp. Even though the sender is in slovvthIS section we \gnore their eﬁ?"t; we assume tht < ss <
b, and then relax this assumption below.

start, the congestion window grows linearly.
The same gnal Sis @ Iiesgwhen the bgttleneck doesn't h Ve have seen that whem exceedsdp, the transfer enters
Y P . If no packets are droppety grows linearly untilcw > ss.

pen to be near the sender. Figure 2 S.hOWS amore ger]eral M %at point, the sender switches from slow start to corigest
of a network path. The box labeledlis the senderR is the avoidance

recewer. Thee; are the minimum 'a‘eﬂc'.es Of a packet on the To derive the behavior of the congestion window in SC after
indicated subpath antt is the transmission time of a packet

. . cw > ss, we define a variabley, that counts arriving ACKs
on the bottleneck link. The queue at the bottleneck is matel o ' : , i
explicitly; other queue delay?s are modeled as random \A&Eiabgnd a functiorrw(x) that represents the congestion window (in

q; (see Section IlI-A). These random delays are meant to C%)Da_ckets) as a function of. For each ACK, the congestion win-

ture the effect of short connections (connections thattdeave OW grows byl /ew, S0 we can write:
slow start). d 1

We have written a simulator that implements this network Few) =— (1)

cw

model and a model of TCP that includes slow stastt hr esh
and fast recovery (with window inflation). It does not imple
ment delayed ACKSs; the receiver acknowledges every pattket. cw(z) = (22 + a2)1/2 )
doesn’t implement a retransmit timer, so it is not accurate f
simulations with long delays or high drop rates. We assumae ttfsocw grows as the square rootef We validate these equations

the other links are significantly faster than the bottlenestk in Section II-D.

Figure 1 shows a hypothetical network path, represented b
pipeline with bandwidth-delay produttlp = 10 packets and a
gueue that drains 1 packet per time step. The queue repses
the router before the bottleneck link. This example is simp
fied by putting the bottleneck close to the sender; we relex t
assumption below.

Then we can solve farw(z) with initial conditioncw(0) = a.



Eventuallycw may exceed the limiting buffeth, which is the
60— # WEOTEER SRR smaller of the send and receive buffers. At that point thelmem
of packets in flight is limited byb, so the queue stops growing,
but cw continues to grow.

Many TCP implementations impose an upper bound
sometimes calledwnd_nax. This is a system-level parameter
that applies to all connections for a given host, so it is gahe
larger thanld.

To summarize, we identify four phases a TCP connection can
go through:

40/

packets

20+

Phase Condition cw growth | Queue growth
1 cw < bdp exponential| exponential
R 2 bdp < cw < ss linear linear
0 200 . 400 600 800 3 ss < cw < Ib | squareroot| square root
time (ms) 4 cw > b square root|  no growth

Fig. 3. Simulation of a self-clocking transfer. Although thender is in slow
start,cw and the queue grow linearly.

I

During Phases 1 and 2, the sender is in slow start; during
Phases 3 and 4 the sender is in congestion avoidance. SC can
occur during Phases 2, 3, and 4.

A connection only passes through all phaseégjif < ss < b,
which is not always the case. In many TCP implementatioms, th
default value ofs is (b [19], so Phase 3 may be rare.

If bdp > ss, the sender switches to congestion avoidance be-
fore the transfer reaches SC. It is still possible for thadfar to
reach SC, but it may take longer. We see some examples of this
in our measurements. blp > [b, SC is possible in the sense
thatcw > bdp, but the average send rate is limitedlbyrtt.

Discussion of TCP has tended to focus on exponential growth
in Phase 1, neglecting the effect of self-clocking. For eplem
7 Brakmo and Peterson claim that TCRe&ds to create losses
I S to find the available bandwidth.[20]” Allman and Paxson erit
0 200 400 600 800 1000 “For TCP, this estimate is currently made by exponentiaily i

time (ms) creasing the sending rate until experiencing packet |a&%]. [
Barakat and Altman write “Due to the fast window increase,
[slow start] overloads the network and causes many l0s28$” [
A casual reader might conclude that long TCP connections in-
evitably induce drops. Fortunately for the Internet, TCRreex-

If a transfer is in SC, ACKs arrive at the sender at intervatins have several opportunities to slow down before inuyiei
of roughlytt. In that case, real timeis approximatelyz - t¢, dropped packet.
which means thatw grows as the square root of time. This N
relationship does not generally hold for transfers in cstiga C- Conditionsfor SC
avoidance, because in that case ACKs don't arrive at regulaia transfer can only reach SC if the bottleneck buffer, is
intervals. But it does hold for large valuesaf, because when large enough to absorb the excess packets. At the beginfing o
cw > bdp the ACK arrival rate is determined by the bottleneckhase 2, wheaw = bdp, there arebdp packets in flight. If
bandwidth, notw. the packets are equally spaced along the path, there might be

This result explains some previous observations; for ex@mponly one packet in the bottleneck queue, but in the worst case
Altman et al. report that they observe “paths where TCP winddb = bdp may be necessary for a transfer to reach SC.
growth is sub-linear” [11]. They suggest that this behavgor  Similarly at the beginning of Phase 3, when = ss, there
caused by increasing queue delays. Appenzeller et al. atso rare ss packets in flight. In the worst casé) = ss may be
this sub-linearity, but they also attribute it to incre@soueue necessary, but if packets are equally spaced, Phase 3 iblposs
delays [18]. Our model suggests that this behavior is a treswith as little ashb = ss — bdp. If bb > ss, Phase 3 can continue
of self-clocking, that the sub-linear function is specificghe for a long time. For example, s = 20 packets andb = 100
square root, and that this behavior occurs even if the quelag d packets, the sender can transmit 4800 packets, or 6.9 MB, in
is not increasing. Phase 3 (from Equation 2).

Figure 4 shows a simulation in whiais is 30 packets, so the Finally, to reach Phase 4, a transfer might n&ee- [ in the
sender switches to congestion avoidance after 30 ACKs. gt thvorst case, obb = Ib — bdp in the best case. Thusiif = bdp,
point, the send rate drops frofbw to a little more tharbw. itis possible for a transfer to stay in SC indefinitely withHya
Afterward,cw and the queue grow slowly. minimal bottleneck buffer.

80—

Fig. 4. The effect of ss. Aftetw > ss, the queue andw grow as the square
root of time.
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Fig. 5. SC with delayed ACKsns- 2 simulation). The gray line shows the Fig. 7. Self-clocking after a drop. SC can continue if theeenough packets
growth of cw predicted by Equation 2. in queue.

TCP sender |100Mbps [112Mbps [1100Mbps | tcp sink . .
NewReno 10ms L 10ms L 10ms DelAck of this packet-based system. It also shows that our simulaito

consistent witms, which suggests that our simplified model is
sufficient to describe the behaviors we are studying, artdbtiva
simulator is a correct implementation of our model.
After t = 1000 ms, the queue does not grow because the
In Section IV we present measurements that demonstrate thainber of packets in flight is limited by, notcw. Therefore
the conditions for SC are common on at least some paths in thi transfer will never induce a drop, and SC can continde in
current Internet. We conclude that awareness of SC is impbrtdefinitely.
for our understanding of TCP performance.
These observations suggests a new category of transfer sgzeThe effect of dropped packets
in addition to “mice”, which never leave slow start, and “ele
phants”, which are governed by congestion avoidance, we sugTo understand the effect of dropped packets, it is useful to
gest the name “capybara” to describe transfers that are Bigtinguish between endogenous and exogenous drops. &ndog
enough to get into SC but small enough to terminate before ovBous drops are caused by the transfer itself, usually byditie
flowing the queue. The capybara is the largest known rodenieitieneck buffer. Exogenous drops are caused by croge traf

Fig. 6. Configuration fons- 2 simulation.

mouse so big it looks like an elephant. or transmission errors.
To reach SC, a transfer needs enough buffer space to avoid
D. The effect of delayed ACKs endogenous drops (see Section 1I-C) and enough luck to get

So far our simulations have been based on a simplified mo#¥icugh Phase 1 without an exogenous drop. It takipspack-
of the network and TCP behavior. To validate these simpific§tS Without a drop to reach self-clocking, so if the drop rate
tions, we run a more detailed simulation usimg 2. Figure 6 ? and exogebr;ous drops are |n.dependent, the chance of reaching
shows the configuration for this simulation: there are fates SC iS(1—»)”*7. For example, ibdp = 10 packets and the drop
and three links. The latency for each link is 10 ms;sois 60 at€ IS 5%, the chance of getting into SC is 60%. If drops come
ms. The bottleneck bandwidth is 2 Mbps, sty is 15,000 B in bu_rsts, the probability of SC is higher—more transferdesuf
or 10 packets. The receive buffeb, is 30 packets. By default, Multiple drops, but more are spared altogether.
ns- 2 sets the initial value ofs to b, as do many implemen- ~ Generally, a transfer can stay in SC as longasioesn’t fall
tations [19]. The bottleneck buffeib is 30 packets, which sat- Pelow bdp long enough to drain the queue. Thus, the longer a
isfies the requirement for SC thali > b — bdp. The sender transfer has beenin SC, and the higher the valus ahe more
simulates the behavior of TCP NewReno; the sink simulates diely itis to withstand a small number of dropped packets.
layed ACKs. Figure 7 shows a transfer that drops the 15th packet, which
Figure 5 shows the result of this simulation. At= 620 is the earliest drop that allow the transfer to stay in SC. When
ms, cw exceedshdp and the transfer makes the transition téhe third duplicate ACK reaches the sender,is cut from 19 to
SC without inducing a dropped packet. At= 1000 ms, cw 9.5 packets, but there are enough packets in flight to allowo
reaches s and the sender switches to congestion avoidance. Agachbdp again before the queue drains.
ter that,cw grows as the square root of time. The gray line As this example shows, a transfer in SC does not display the
labeled “cwpred” shows the values efw predicted by Equa- behavior expected in AIMD congestion avoidance. Instead of
tion 2. The maximum difference between the predicted valuesducing its send rate when a drop is detected, a self-eigcki
and simulated values is 0.06%, which shows that the contirttansfer only pauses long enough to reduce the queue, and the
ous differential equation (Equation 1) is a good approxiomat resumes at the same send rate (actually slightly higher).
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Fig. 8. The effect of periodic drops. Fig. 9. The transition from congestion avoidance to sedtking after a drop.
F. The effect of periodic drops this result is based on the assumption thahever exceedsip.

; o 5
As long as a transfer stays in SC, throughput is strictll/iS @ssumption is only true when < 3bdp*/8. For larger
bandwidth-limited. But there is a wide range of condition‘éalues ofk, we have to take into account bandwidth limitation

. H 2 2
in which transfers switch back and forth between congestiéﬂ\ﬁ‘encw > bdp. Thus, in the rang8bdp?/8 < k < 3bdp?/2,

avoidance and SC: to understand average throughput, we HiGeaverage throughput depends on both the drop rate and the

to take both into account. Two questions we can ask are  Pottieneck bandwidth. o _
« What is the maximum drop rate that keeps a transfer in SC? 10 estimate this throughput, we start by considering a singl

« When does bandwidth (as opposed to drop rate) have a lihiiterval between drops. Given the_initial congestion windo
ing effect on throughput? cwo and the number of packets until the next drépwe can
We start by considering a path that drops evethypacket (in the COMPute the average throughput during the intemval, _
next section, we consider random drops). Gikemve can find First, we need to know when the transition from congestion
the minimum value ofw in steady state, which we call—this avoidance to SC will occur; that is, whew reaches$dp. Given

is the same that appears as the initial condition in Equation L0, We solvecw(z) = bdp for k., which is the number of
Then we can compute the time it takes far(z) to recover ACKs the sender gets during the congestion avoidance phase.
from a dropped packet; that is, the time to climb frem = a . 2 9

to cw = 2a. Solving Equation 2 withw = 2a yields Fea = (bdp” — cwy) /2 ®)
Next we need to know how much time,,, passes before the
sender gets,, ACKs. To do that we estimate average through-
put while cw grows fromcwy to bdp. In general, agw grows
from cwq to a given valuesws, its average value is

r = 3a*/2 3)
In equilibrium,z = &k and

a=+/2k/3 4)

o — L /k cw(z)ds = 2(cw — cwp) (6)
Figure 8 shows how a transfer converges on this equilibrium. “wrEk ~ 3(cw? — cwd)

The simulator drops the 30th packet and every 62nd packet o ) )
thereafter. The analysis predicts that the transfer wilhtegui- Since we know that the transfer is in congestion avoidance du
librium whena = (2k/3)1/2 = 6.43 packets. In the simulation, "9 this part of the interval, we expect the average throughp
the transfer converges an= 6.40. track cw,,4, With one adjustment: sincew is an upper bound

Femin IS the minimum value of: that keeps the transfer in©n the data in flight, and TCP tries to send maximum-size pack-
SC, which happens when > bdp. We find k,n;,, by solving €tS: the actual data in flight may be up to one packet lesscthan
V2k/3 = bdp, which yield_sk:mm = 3bdp?/2. This is bad and on average we expect it to be one-half packet less. There-
news, because it means thatbd increases, the drop rate refore,

quired for SC decreases quickly. For examplehdp = 10 tea = bdp * kea/(cWang —1/2) (7)
packets,k.,;, = 150 packets and the maximum drop rate igyhere the unit of,, is the transmission time of a packet at the
Pmaz = ]-/kmzn = 0.67%. bOttleneCR.

However, as long a8a > bdp, the congestion window will  After the firstk,, packets, the transfer is back in SC, so the
sometimes exceeltlp, and so the transfer will sometimes bgemaining timet,. = k — k... During the entire intervak — 1

in SC. We can use this observation to compute steady state
throughput as a function of dI’Op rate. 1Since we measure time in units &f, it is convenient to equate expressions

. . . . of time and packets without multiplying the units explicitigtrictly, the time
It is well known that in congestion avoidance, the average ransmitk packets at the bottleneck ratetis= k packets multiplied by

steady-state throughput is proportionallt, /p [1][5][8], but  transmission time / packet); for simplicity we write= k.
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Fig. 10. The effect of periodic drops on throughput. Fig. 11. Distribution ofcw as a function ok, 4. The analysis and simulation

show good agreement.

packets are transmitted in total time- ¢, +t,.. So the average

throughput in packets per rtt is 2. Choosé, the interval between drops, from a geometric dis-

tribution with parametep andk,,, = 1/p.
3. Computecw; = (2k + cwi)'/?.
Repeating these steps, the distribution of the computed

. o : forms an improved estimate pfif.
Figure 9 shows a transfer with= 62. It starts by dropping the ™ rpic’yrcess can be made more efficient by treating the values

9th packet, chosen for purposes of illustration becauset# pof pdf as weights to be distributed over the improved estimate
the transfer into equilibrium immediately. The horizonliae  pdf’ according_ to the distribution of. Furthermore, we can
is atbdp = 10 packets; the vertical line shows the time whefompute the distribution of implicitly by repeatedly dividing

the transfer gets back to SC as computed by Equation 7, so #f(cw) by p. Here is the algorithm:

thavy = bw * (k — 1)/ (tea + toe) 8)

example is consistent with our analysis. update_pdf (p):

Singekca i§ 29 packets andg;avg.is 8.3 pagkets per rtt, is fg'; i 'i g domai n( pdf )
37.4 (in multiples oftt). The time in SCf,,, is62 — 29 = 33 w = pdf[i]
time units, Soth.., is 43.3 packets/s. In the simulation, the cwo =i /2

steady-state throughput is 43.0 packets/s, so this exasalso apply_wei ght (w, cw0, p)
Given the initial estimatepdf, updat e_pdf forms an im-

consistent with Equation 8. d estimatend?’. based on the d The functi
Figure 10 shows that this analysis agrees with the Sim‘maﬂg:)%/l;wzisgm%%’;r{;ﬁutegst?\e c\)/\r/]eigﬁt; (r)c\),grrgg’} : givgﬂcmﬁ)n

over the relevant range éf from3bdp®/8 = 37.5t03bdp®/2 =  and the distribution of implied by p. ’

150, which corresponds to drop rates from 2.7% 10 0.7%. The,| \ yeight (w, cwo, p):

plateaus in the simulation results are due to the discreseoke for k in domain(pdf):

packets. Each simulation runs for 2000 packets and computes j = (int)(sart (2+k + cwO*cw0))
the average throughput in steady state (from the fifth draj un g dr '[Oj I g

the end). w-=d

G. The effect of random drops To generate.an initial estimate for the distributioncqf, we
can use Equation 6 to compute the average congestion window
So far, we have been assuming periodic drops. In this segr a given drop ratey = (14/9)+/2kavg/3. Then we use a
tion, we extend our analysis to random drops and derive the renormal distribution with parametersando = 1/3 as the initial
tionship between throughput and drop rate in the domain @heistimate fopdf. Over the relevant range of drop rates, the up-
transfers vacillate between SC and congestion avoidance.  date algorithm converges after 2 iterations. Each itenatées
Again, itis useful to think of a transfer as a series of inésv time proportional to:2, wheren is the number of discrete values
between dropped packets. If the drop rate Bnd we assume in the domain ofdf.
that drops are uncorrelated, we can compute the distribafio  Figure 11 shows the computed distributiong-affor a range
the interval lengths. For a given interval, if we know thdiali of kavg, @long with the distribution ofw from a simulation of
congestion windoww, and the interval length, we can compute, long transfer (64000 packets). In general there is gooekagr
the final congestion windoww, . This suggests an iterative pro-ment.
cess for approximating the distribution@f, as observed atthe  The vertical line in the figure is dtdp = 10 packets. Even

time of a dropped packet. whenk = 30 (p = 3%), cwg > bdp more than a quarter of the
Given an estimate gidf (cw), we can generate an improvedime, as indicated by the dashed liri€hus, bandwidth limi-
estimate by the following procedure: tation is relevant to TCP performance even when the drop

1. Choosew from pdf. rate is relatively high.
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Fig. 12. The effect of random drops on throughput. Fig. 13. Throughput and drop rate on a log-log scale. For logpdates,
th ~ p~0-15,

Next we compute the average throughput of a transfer With The effect of delays
a given distribution otw. In an interval between drops, if we ) ) )
know the initial congestion window;w,, and the number of So far we have been ignoring the effect of cross traffic (ex-

packets before the next drop, we can compute the durationcept in the form of exogenous drops). In this section, we con-
of the interval and average throughput during the intersag( sider the effect of cross traffic at the non-bottleneck linkghe

Section II-F). Then, since we know the distributions-af, and N€xt section we look at interactions among transfers treresh

k, we can estimate the average throughput of a long transferigftieneck link. _
Monte Carlo simulation: In the model in Figure 2, queue delays at non-bottleneclslink

appear as random variableg:is the total queue delay incurred

1. Choose:w, from pdf (cw). . by ACKs on the path from receiver to sendes;is the delay
2. Choosé: from the distribution of interval lengths. incurred by data packets between the sender and the batlene
3. Computeth andt using the technique in Section II-F. andgs is the delay between the bottleneck and the receiver. At

The computed values oh give us the distribution of through- €&ch point in the path, FIFO order is maintained. If a packet
puts in each interval. In order to compute the time average, % delayed, subsequent packets are delayed enough to mainta
have to weight eachh by the duration of the intervat, This order. We assume that delays are uncorrelated (except at the

process can be made more efficient by the same algorithm RRitleneck, which is modeled explicitly), and that the qiele-
used to estimatpdf (cw). It runs in time proportional taum, lay of ACKs on the return path are unrelated to the forwariifrpa

wheren is the number of discrete values faw andm is the dueue atthe bottleneck.
number of discrete values foi. Figure 14 shows the effect qf, a delay between the bottle-

. . . . : . neck and the receiver. In this example, the 25th packet &ydel
We believe that this algorithm is equivalent to formulatang by 300 A del hi intin th h halts the d
Markov model for the congestion window and solving the re-y ms. Adelay atthis pomt.lnt € path halts the datastrea
. . immediately; after a lag oftt/2, it halts the growth of the con-
sulting system numerically. ) ; .
. gestion window, so the sender stops sending. After a loragr |
Figure 12 shows the computed throughput for a range of vghe queue at the bottleneck starts to decline.
ues ofkq., along with the measured throughput of a simulated after the delayed packet, subsequent packets arrive il rapi
long transfer (64000 packets). Throughout the range, tiseresccession (limited by the bandwidth of the slowest link be-
good agreement between the analysis and simulation. tween the site of the delay and the receiver). The receiver is
This analysis doesn't yield a simple relationship betweeues a flurry of ACKs, which causes the sender to issue a burst
throughput and drop rate, but we can look for an empirical-relof packets, which arrive in succession at the bottleneckhisf
tionship. Previous results suggest thiat~ p”, with 3 = —0.5.  burst arrives before the queue is depleted, then self-rigdan
To estimate3, we took the results from Figure 12 and plottedesume without any loss of throughput.
log(th) versuslog(p). Figure 13 shows the result with a piece- A delay in the ACK stream has a similar effect, except that
wise linear fit estimated by least squares. the arrival of packets at the receiver is not disrupted. Aaglel
In the rangep = 1.8% to 5% k., = 20-56), the curve fits between the sender and the bottleneck only disrupts thetlgrow

aline with 3 = —0.46 (R? = 0.99), which is consistent with Of the queue.
the 1/,/p heuristic. For lower drop rateg, = 0.6% to 1.8%
(kqwvg = 56-160), throughput is limited byw and the curve
flattens, with3 = —0.15 (R% = 0.95). Belowp = 0.6%, the Transfers with largess and /b can keep a lot of packets in
throughput is essentiallyrw. This relationship is qualitatively queue, which makes them more robust in the presence of delays
similar to the one derived by Padhye et al. [10]. and exogenous drops, and increases their share of therigattle

I. Sharing with short transfers
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This simulation also shows the effect short transfers have o

longer transfers. During slow start, a new transfer imp@ees
- i riodic delays on the existing transfer; in other words, tfieot
o J B L M A o of short transfers is the same as the effeaj;pfa random delay

0 500 1000 1500 between the bottleneck and the receiver (see Section II-H).
time (ms)

Fig. 14. The effect of a queue delay between the bottlenedkilz receiver IIl. BANDWIDTH SHARING

(g3)-
In this section we analyze the interactions of long trarssfer

sharing a bottleneck. Many TCP models assume that the mech-
200 11 5 mmp——— 3 o anism of bandwidth sharing is the AIMD congestion avoid-
ance algorithm, and that transfers interact with each dbiger

:3222 inducing dropped packets. But when the bottleneck buffer is
1501 ___ queue large enough, transfers share bandwidth by sharing byfteres
queue2 Without inducing dropped packets, transfers can reach an eq

librium in which the sum of their send ratestis, the queue
at the bottleneck is constant, and the sum of their congestio
windows exceedé&dp indefinitely.

To investigate this behavior, we extend the model shown in

size (pgckets)
Q

501 Figure 2 to include two (or more) transfers sharing a bogtbén
as shown in Figure 16. We use the notatian, ss; andlb; to
0 f - | | refer to the congestion window, slow start threshold, armiti
0 2000 4000 6000 ing buffer of theith transfer, and-tt; andbdp; to refer to the
time (ms) round trip time and bandwidth-delay product of ttie path.
Fig. 15. Transition from slow start to queue sharing. Thesddransfer sees Figure 17a shows a simulation of two transfers that start at
long and increasing queue delays. the same time, withs; = ss; = 80 packets. The lines labeled

“data” and “data2” show the total data received by each fesins
in units of packets. The lines labeled “queue” and “queue2”
bandwidth. This is good for long transfers, as long as enoughow the number of packets each transfer has in the botkenec
buffer space is available, but it is bad for short transfers. buffer. The marks at the top of the figure show when packets
Persistent queues increase the effective latency of the rae sent; there are two rows, one for each sender. For clugty
work, which increases the time for a transfer to get througti®ngestion windows are not shown.
slow start. They also decrease the available buffer spdtienw  During Phase 1, the transfers tend to repel each other,ragndi
makes it less likely that a competing transfer will make @t packets in alternating bursts rather than interleavinig;iththe
sition to SC without inducing a drop. packet clustering described by Zhang et al. [2]. Transfars ¢
Figure 15 shows an example with two transfers, one witle divided into a series of intervals where each transfedsen
rtt = 200 ms, the other withtt = 300 ms, both withss; = 30. cw; packets per interval. Thus, the duration of each interval is
The second transfer begingat 1000 ms, after the first transfer t¢(cwy + cws).
reaches SC and establishes a persistent queue. When cw; > ss;, the senders switch to congestion avoid-
For the second transfer, the initial latency is 668 ms, whi@nce. During each subsequent interval, each congestiaowin
implies that there were 18 packets in queue when the initgdows by 1 packet. By the same analysis as in Section II-B, we
flight arrived at the bottleneck. Aav, expands, the queue in-can show that the congestion windows and queue are bounded
creases quickly, so the effective latencies of the nextfounds by the square root of time, as in Phase 3 (see Section II-B).
are 720, 740, 840 and 1040 ms. Whencw; > [b; for all transfers, the queue stops growing, but
The transfers reach steady state when = ss, = 30. By thecw; continue to grow as in Phase 4.
then,cw; has grown to 37, so the first period in steady state isThese observations lead us to define a transfer state called
20(30 + 37) = 1340 ms. After that, the period grows by 40 msQS, for “queue sharing. The definitive characteristic of QS
per period. Initially, the proportion dfw for the second transfer is that two or more transfers share a bottleneck and the sum
i530/(30 + 37) = 45%. of their congestion windows exceedsdp.



A. Unequal sharing

Previously we have usedt to denote the base round trip time
for a path, excluding queue delays. In this section we intced
ertt to denote the effective rtt including queue delays, and use
brtt for base rtt. @
When transfers share a bottleneck through AIMD congestlon_\c200
avoidance, they share unfairly. Specifically, each trangéts &
a share of the bandwidth in proportion tgertt. Floyd and
Jacobson show that the cause of this bias is the additivedser
algorithm; after a dropped packet, the long-rtt transfestasver
to claim its share of the available bandwidth [23].
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But this heuristic only applies when throughput is congesti
limited. In QS, throughput is bandwidth-limited and the poo

4000 6000 8000

time (ms)

tion of sharing is determined bys and (b, and depends only b) 200
weakly onertt andp.

To demonstrate this effect, Figure 17b shows a transfer with
brtt = 100 ms sharing a bottleneck with a transfer witht =
200 ms. The values ofs; are chosen so that in steady state the
two transfers have the same number of packets in queue—=At
4000, the queue delay at the bottleneck is 400 ms, satig
are 500 ms and 600 ms, respectively. By thertt heuristic,
the long-rtt transfer should get 45% of the bottleneck badthw
By the queue sharing heuristic, we expect the transfersaesh
equally, and they do.

On the other hand, if one transfer has a higherit tends

b

—data

- e it TN
L=t ey 2 i

to keep more packets in queue and get a higher proportion of
bw. Figure 17c¢ shows two transfers with the sam#&; by the

%

2000 4000 6000

time (ms)

1/ertt heuristic, they should share equally. But in this case ti§¢ 200
values ofss; are chosen so that the first transfer keeps more
packets in queue. By the queue sharing heuristic, the #ansf
with larger ss should get 57% of the bottleneck bandwidth; in
the simulation it gets 58%. @
This analysis also applies when more than two transferseshar_\Cloof
a bottleneck, and in the presence of random delays. Figute 17
shows three transfers with the samé andss; = 30, 15, and =
5 packets. This example includes random delays chosen from gq |
a lognormal distribution with paramete{s= 4 ando = 0.6.
The delays cause the transfers to interleave rather than alt
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nate, but the effective throughput of the transfers is asebeul.
Our analysis predicts that the transfer with = 30 should get
30/(30 + 15 + 5) = 60% ofbw; in the simulation it gets 56%.

0

4000 8000

time (ms)

2000

L P d) 200
In Phase 4, the number of packets in flight is limited/by

S0 queue residency is betweldn — bdp; andib;, depending on
packet spacing. Again, we can use the expected queue regiden
to predict the proportion of queueing.

Another characteristic of QS is that transfers are fast $o di
cover available capacity. Under AIMD congestion avoidance
transfers increase their send rate linearly, so when afeans
through a bottleneck ends, it can take many rtts for the nemai
ing transfers to claim the available capacity. In QS, theaiem
ing transfers use the available capacity immediately, as/sh
in Figures 17b and 17c.
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B. The effect of delayed ACKs

10000
time (ms)

In this section we usas to validate our model by compar-Fig. 17. Self-clocking with multiple transfers: (a) queueushg, (b) transfers
ison with a more detailed simulation and to investigate the e with differentrtt, (c) transfers with differents, (d) transfers with different
fect of delayed ACKs. We extend the configuration in Figure 6
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Fig. 18. A transfer that implements delayed ACKs sharing dévmatk with Fig. 19. With exogenous drops, throughput dependstorbut only indirectly.
one that doesn’t (ns simulation).

) _ _ _ residency, and only weakly ofrtt. In turn, queue residency
to includen TCP senders sharing the bottleneck link, with rttaepends strongly ogs andb. In Section IV-B we show mea-

varying from 40 — 120 ms. _ surements that demonstrate these effects in the Internet.
Simulating this model with and without delayed ACKs, we

see no effect on the qualitative results from the previoutiae
« Relativeertt for different senders has only a weak effect on , ) ) i
Our analysis and simulations are based on the assumption

the proportion of sharing.
prop d that the bottleneck buffer is large enough, and the droploate

« In Phase 3, a sender with a largargets a larger share é6fv. T .
« In Phase 4, a sender-receiver pair with a lafgeyets a larger enough, to allow SC. How often is this true in the currentiinte
' net?

share obw. )
ns also allows us to simulate a sender that implements delay JO answer thaj[ question, we need a ;ample .Of Inter.net paths.
ACKs sharing a bottleneck with one that doesn’t. Figure 1 ur first sample includes paths from a single client (Cligrtbl

shows two transfers withrtt — 60 ms,bdp — 10 packets, and a set of geographically-distributed web servers. To gdadhis

ss — Ib — 30 packets. One of the receivers implements delay&§ We used traces from the IRCache Projatt @: / / ww.

ACKs; the other doesn't. As expected, the transfer withykda i rcache. net/)tofind large files available from servers busy
ACKs takes longer to get through Phase 1, but in QS the trag:?-oth not to notice our measurements. Looking at one day

fers sharéw equally, at least approximately. Interestingly, th tracesdffr_f)m ?10 proxy selrvers, we |derg|f|ed 83 f:jequ;ntl;g
periodic structure is more complex; instead of strict alttion, accessed files that were at least 100,000 bytes. We dowmloade

there is more interleaving of packets. each file 10 times with an average of 100 seconds (exponigntial

We conclude that delayed ACKs have no substantial effect Sﬁt”bmed) between them. The receive buffer was setto 1 MB

the qualitative behavior of QS, but in some cases they modﬁ9 we expec'lc the. fl.|m|t|ng tr)]ufferhto be at j[he sendr?r.h
the pattern of interleaved transmission. Next we classified each path according to which state most

transfers were in. We did this by a combination of statistica
techniques and visual examination. These techniques ari¢t-ad

] . ] tedly ad hoc, but our goal is not to create an automated pro-
In this section we examine the effect of exogenous drops egss for classifying TCP connections (see Section IV-C), bu

bandwidth sharing. Figure 19 shows the result of a simulatig, gemonstrate the existence and estimate the prevalerice of
with brtt; = 100 ms and values dirtt, from 30—300 ms. The phenomena predicted by our model.

figure plots the proportion of sharing. /(thy + ths), Versus  \ye yse statistical heuristics similar to those in T-RAT [24]

rit, for several values of, and compares the result to the prog, identify flights of packets and estimatét. We have sev-

portion of sharing predicted by the/ertt heuristic. We ob- eral measurements for each path, and each measuremest yield
serve:

« For high drop rates, a transfer with a shertt gets a greater

IV. MEASUREMENTS

C. The effect of random drops

share ofbw, in accordance with thé/ertt heuristic. Client | Median Median | Median| 90%ile
« In a range of moderate drop rates (0.5 — 4% in the example), rtt, ms | bw, Mbps | bdp, KB | bdp, KB
TCP shares more fairly than thgertt model predicts, espe- 1 86.3 2.77 21.6 57.0
cially in the left side of the figure wheitelp, is small. 2 82.9 7.95 56.3 154
« At low drop rates (less than 0.5% in the example), bandwidth 3 70.3 23.2 141 572
sharing is nearly independent @ftt. TABLE |

In summary, when the drop rate ahdp are low enough to al-
low QS, the proportion of sharing depends primarily on queue

ESTIMATED PATH PARAMETERS
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several estimates ott, so we use the minimum of all measure- 4001
ments to estimate the basg of the path.
To estimate bottleneck bandwidth we use basic packet pair
techniques [25]. In general these techniques are not highity 0300
able [26], but because we observe several long transferaaim e S
path, we are able to filter aggressively, which improves itrec =~ —200+
sistency of the results, and may improve the accuracy [27]. |
any case, we only need a coarse estimate for our purposes. 100+
The first line of Table | summarizes these estimates for the e
83 paths we observed from Client 1. The estimatéudlis the 0k ‘ ‘ ‘ ‘ ‘
product of the estimatedtt andbw. This client is connected 0 20000 40000 60000 80000100000
to the Internet by 2 T1 lines with a total effective bandwidfh time (ms)
roughly 2.8 Mbps. In many cases the T1s are the bottleneck,880 500 77
this sample of paths is skewed toward relatively lawandbdp. SC + QS?
With these estimates in hand, we examine the timing charts 4001
and classify each transfer using the following criteria:
1. If packets arrive in identifiable flights and the number of m300-
packets in successive flights roughly doubles, we concheteat o
transfer is in Phase 1. If the transfer ends in Phase 1, weifflas S
it as opportunity-limited (OL), which means thab never had 2001
the opportunity to exceelitip. Figure 20a shows an example in
which all ten transfers are OL. 100+
2. If a transfer leaves Phase 1, and the rest of the packets ar- A
rive in identifiable flights, and the size of the flights is rblyg Obﬁ - 1000 2000 3000
constant, we classify the transfer as buffer-limited (Bkhjch time (ms)

means that the number of packets in flight is limited by thelsen
or receive buffer. Figure 20b shows an example in which all te
transfers are BL.

Fig. 21. Timing charts for paths with different steady-sta¢bavior.
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3. If a transfer leaves Phase 1 and the rest of the packets arri Packet spacing

at roughly equal intervals without identifiable flights, ahthe th
]

fo0)
Q

modal interarrival time is within a factor of two of a packetris-

fer time at the estimatefdv, we classify the transfer as SC (self-
clocking). Figure 21a shows a path where all transfers r&&th
after 4 rounds of slow start. We confirm that these transfers a
not OL because the last “flight” is more than double its prede-
cessor, and much larger than the estimatéd

4. The received data curve in these figures is the integréieof t
receive rate, so the Al phase of congestion avoidance appsar
a parabola. When a drop occurs, there is usually a visiblg/dela
and, when the transfer resumes, the slope is roughly halfed.
the data curve shows linear acceleration during additimease
and at least one point of inflection at a multiplicative dese
we classify it as CA (congestion avoidance). Figure 21b show
a path where several transfers demonstrate the charéictbes Fig. 22. Packet interarrival timesl) for 10 transfers during the transition to
havior of AIMD congestion avoidance. SC.

(o))
Q
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Q

arrival(2i) - arrival(i)
|

0 10 20 30
i (sequence number)

Our classifications are deliberately conservative in thesse
that we only classify a transfer if it clearly demonstratbare
acteristic behavior of OL, BL, SC or CA. Transfers that do n
fit neatly into these categories are unclassified (lab&®din

Later we made a set of measurements from Client 3, which
cif on the campus of a West Coast university with multiple con-
nections to the Internet, including a T1, a DS-3 (45 Mbps) and
- . two Gigabit Ethernets (1 Gbps each). Using new data from IR-
;ﬁglirmkg;%as:'g%j transfers are most likely to be CA &,Q Cache, we identified 133 large files available from busy ssrve

' o .. Since we expected many higdp paths, we increased the size

Several measurements in this dataset show characten$ticimit 1o 2000 KB. In this dataset, we find a lower prevalence of
queue sharing. Figure 21c shows an example where arrivals €& and more CA. Still, on 24 out of 133 paths (18%), SC is the
often be divided into rounds, but there is no consistenepath ., 5st common state.
the number of packets per round. Several of these trangfers r \ys conclude that the self-clocking behaviors demonstiated

semble Figure 17d, so they may be examples of QS, butwe dQqyt i odel exist in the Internet, and that SC is a common state
have enough information in these measurements to confitm thg, long TCP transfers, at least for some clients.

In Figure 21d, most transfers are in SC, but two transfers ap-
pear to share the bottleneck with another, unobservedsfean A. \alidation of SC
In both cases, the transfers revert to SC when the competin

transfer completes, but there is no clear-cut periodic Weha
S0 again we hesitate to call this QS. In the next section, we
scribe a set of measurements specifically designed to fgde

%\Ithough we don’t measure the queuecar during our mea-

y examining the time between packet arrivals more casefull
If the sender is in slow start, and the receiver ACKs every

(Iiéjrements, we can confirm that they demonstrate self-eigcki
nt

queue sharing. ] o acket, then the ACK of packewill cause the sender to trans-
Table Il summarizes our classifications. On 61 of the 83 pat packet2i and2i + 1. If a; is the arrival time of packet,

(73%), the majority of the 10 transfers are in SC. There akg ofqp
7 paths where CA is the most common state. Ten paths are BL,
two are OL, and two are unclassified. One path is application-
limited (AL); according to the HTML header, the server isrunwhereg is the number of packets in queue when packetives
ningt ht t pd, which limits transfer rates. at the bottleneck, ang- ¢t is the total transmission time of those

We repeated the measurements from Client 2, which is cdickets. o
nected to the Internet by cable modem. The throughput foyman !N Figure 22, the thin lines show; for 10 transfers from the
transfers is higher (near 8 Mbps), so this sample includgsspaSa@me server. The black line shows the packet spacing we ex-
with higherbdp. We expect the prevalence of SC to be lowePect if the queue at the bottleneck grows as in our simulation

and it is, but not by much. On 54 of the 88 paths (61%) sc @ self-clocking. In some cases the actual interarrivaktiis
the most common state. longer than predicted, probably due to cross traffic, bug @l+

most never shorter. This result shows that for transfertsapa
pear to be in SC, the spacing between arrivals is consistiémt w

di:agi—ai:rtt—i—qtt (9)

Client]] SC]| CA | BL | OL | ??| AL || Total the behavior of the queue we expect during SC.
1 61 7| 10 2| 2 1 83 . .
3 24| 24| 44| 17| 24 0 133 To investigate the prevalence of queue sharing, we indisite
TABLEI multaneous transfers from pairs of servers to the samet cliém

PATH CLASSIFICATIONS. chose Client 1 because we have determined that self-clgpdkin

common for transfers to this client.
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We identified 23 web servers with files larger than 300 KB,
and generated 100 test cases by choosing two servers atmando
and initiating two downloads in rapid succession. As in tre p
vious experiment, we use statistical heuristics to idgiiibaks
between flights and estimatét, and packet pair techniques to
estimatebw andbdp for each path. We then apply the following
classification criteria:

1. If the transfers don't overlap because one is delayed, we
know that they did not share the bottleneck. This happens in
3 cases.

2. When one transfer ends, if the throughput of the other trans
fer is unaffected, we conclude that the transfers were mitdd

by the same bottleneck link. This happens in 6 cases.

3. If packets arrive in alternating flights, the size of thgtts
increases linearly or stays constant, and when one of the-tra
fers ends the other is able to use the available bandwidtrebimm
diately, we classify the measurement as QS.

4. If either transfer shows the characteristic curvature ian
flection points of AIMD congestion avoidance, we classifg th
measurement as CA.

Based on this classification, there are 91 cases where we suc-
ceeded in inducing simultaneous transfers that share &e-bott
neck. In 68 of these cases (75%) the timing charts show be-
haviors characteristic of queue sharing. Figure 23 shovwerak
examples.

Inanother 11 cases the periodic structure is not clearheuét
appears to be queue sharing at the bottleneck, because éhen t
first transfer ends, the throughput of the second increasee#
diately. In the remaining 12 cases, one of the transfers@An
so that when the first transfer ends, the second acceleratgs g
ually. These results suggest that in network paths wheresSC i
common, QS is a prevalent mode of bandwidth sharing for long
transfers.

Looking at specific cases, we see support for several of the
behaviors predicted by our model. Figure 23a shows one of the
clearest examples of queue sharing between two servers with
roughly the samett. This measurement is remarkably similar
to the simulation output in Figure 17a.

Figure 23b shows two servers with rtts that differ by a factor
of 5 (17 ms and 86 ms). The transfer on the long-rtt path takes
longer to get through slow start, but in steady state thestran
fers share bandwidth almost equally, just as in the sinandti
Figure 17h.

Conversely, Figure 23c shows two servers with the same rtt.
One of the transfers gets a head start and occupies the meeue,
the second transfer takes longer to get through Phase 1. When
the first transfer ends, the second transfer is able to claén t
available bandwidth immediately, as our model predicts.

In many of these measurements, the arrival pattern shows
the characteristic scalloped shape that our model predivs
paths with different-t¢ share a bottleneck, or when one starts
later than another.

Figure 23d shows a case where the second transfer to start get
higher throughput in steady state, despite a lomgerThe most
likely explanation is that the queue residency for the fiest$fer
is limited by the send buffer. In our previous measurememts,
observed buffer-limited transfers from the same serveichvh
confirms that this server provides relatively small senddvaf
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These examples show that under some conditions flgw in SC. Wheng > 8/3, transfers stay in congestion avoidance
and lowp) bandwidth sharing is determined By andib, and (CA). These results are based on periodic drops; with random

depends only weakly ort. correlated drops, the range where connections vacilldtedss
SC and CA is wider.
C. Related work « We present an analysis of TCP performance in the domain

Zhang et al. use packet-level information and a tool called Wwhere transfers are sometimes limited by the congestion win
RAT to identify the limiting factor for a large dataset of TCFdow and sometimes by the bottleneck bandwidth, and veriy th
connections [24]. They find that a majority of transfers a@nalysis by comparison withs simulations.
opportunity-limited; in our measurements, we see a lower pe When multiple transfers share a bottleneck, they can enter
centage because we deliberately induce long transferhie®ét @ steady state, which we call QS for “queue sharing”. In QS,
maining connections, they find that the majority are appitice  the sum of the congestion windows can exceégdindefinitely
limited; again, we see a lower percentage because our neeaswithout inducing drops.
ments are based on large file transfers, which are less ligely» Transfers in SC and QS may not respond correctly to a
be application-limited. dropped packet; after a pause, they resume sending at #ysligh

They characterize many of the remaining connections Bigher rate.
congestion-limited or buffer-limited, but this classificen is « When transfers in QS share bandwidth, the proportion of
based on statistical heuristics that break transfers ippmient sharing depends strongly @st hr esh and the send/receive
flights. For transfers in SC there is often no apparent break fpuffers, and only weakly ontt. Under these conditions, TCP
tween flights, and apparent breaks might be due to crodifrafdoes not obey the//p and1/rtt heuristics, which are the basis
for transfers in QS, apparent breaks are due to interackiens of TCP-friendly algorithms [29][30]. Thus, TCP is not alveay
tween transfers, and unrelatedstd. Therefore it is not clear TCP-friendly.
how T-RAT would classify a connection in SC or QS. Accord- Some of the behaviors we observed have been described be-
ing to our interpretation of their heuristics, some conivext fore, but they are often omitted from models of TCP. For exam-
in SC might be misclassified as congestion-limited, and somke, many models of TCP performance, and heuristics for-char
connections in QS might be misclassified as buffer-limited. acterizing TCP behavior, are based on the assumption thstt mo

Jaiswal et al. use passive measurements to characterize TGRnections send packets in discrete flights, where theligne
connections [28]. Their heuristics are also based on thexgss tween flights is roughlytt. For transfers in SC, there are often
tion that the packets of a TCP connection can be divided imo breaks between flights, and for transfers in QS, the time be
flights, and that there is no overlap between the arrival ef dgveen flights depends on the congestion windows and transfer
knowledgments and the transmission of additional datatiBsit time at the bottleneck, nott.
overlap is very common in SC. According to our interpretatio On the other hand, our observations suggest ways to improve
of their heuristics, some connections in SC and QS might BEP. In SC, the congestion window can be much greater than

misclassified as application-limited. bdp, making it ineffective as an estimate of available capacity
Some implementations address this problem by bounding
V. CONCLUSIONS with a system-level parameter (likewnd_max), but if this pa-

We have used a simple network model to investigate the Bameter is too low, it limits performance, and if it is too higis
havior of TCP when the buffer at the bottleneck link is largdfrelevant. It may be desirable set this bound dynamiceltjier
than the bandwidth-delay produdidp) of the path. We iden- by using packet pair techniques to estimate the bottlenack-b
tify three phases that can occur in the transition from slasts Width or by using sub-linear growth in the congestion window
to congestion avoidance. Our analysis explains some previ@s a signal thatw > bdp.
observations, including sub-linear growth of the congesivin- In some conditions the initial value afst hr esh and the
dow, and predicts several new behaviors. We present measgize of the send and receive buffers have a strong effect ¢h TC
ments that show that these behaviors occur in the Internat. @Queue behavior in steady state. It may be desirable to adjust
analysis and observations have several implications: these values dynamically. Several projects have tried tsome
« Under some conditions (large buffers, low drop rates), TGHEp and setss accordingly [20][31][32] [21][33].
connections can enter a steady state, which we call SC, ichwhi In future work, we would like to investigate the implicatin
the congestion window can exceédp indefinitely. Transfers of this model for network provisioning and queue management
can transition from slow start to SC without inducing a drop. A perpetual problem with TCP is that large buffers allow [gers
« We derive the size of the bottleneck buffélr, needed to sup- tent queues, which increase the apparent latency of theorletw
port SC. In the worst case, SC may requibe> [b, wherelbis but smaller buffers reduce the ability of the network to Hand
the smaller of the send and receive buffers. But in the best, cabursts, which increases the drop rate. Our analysis coatpkc
whenlb = bdp, SC is possible with minimalb. this picture, showing that the queue behavior of transtedsfi
« We derive the range of drop rates in which self-clocking hdsrentin SC, QS and congestion avoidance. Thus, optim&dbuf
a significant effect on performance. We can summarize thesees may depend on the prevalence of SC and QS. Recently Ap-
results by defining a paramet@r= p - bdp? that characterizes penzeller et al. revisited buffer sizing for TCP flows [18hely
a network path with drop rate and bandwidth-delay productassume that long flows are in AIMD congestion avoidance, so
bdp (measured in packets). f < 2/3, transfers can stay in it is not clear whether their results apply when SC and QS are
SC indefinitely. 1f2/3 < 5 < 8/3, transfers will sometimes be prevalent.
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