
Homework 5

Software Systems Allen B. Downey

Fall 2006

Due: Monday 6 November
The purpose of this assignment is to experiment with several implementations of locks, and to

measure the frequency of errors caused by incorrect synchronization primitives.

Break the lock

Pick up the code by running

wget http://wb/ss/code/lock.tgz

tar -xzf lock.tgz

cd lock

The file lock.c contains an incorrect implementation of a lock written in C. The file lock.x86.s
contains a correct (I think) implementation of a lock written in Intel x86 assembler code. I will
explain it in class. The Makefile shows how to make programs called goodlock and badlock based
on the two versions of a lock. Compile and run both programs.

The file example.c contains the skeleton of a multi-threaded program with shared state. The
shared state is encapsulated in an object called Environment. Compile and run example.

Experiment 1

1. Starting with a copy of example.c, write a program that uses at least two threads and that
accesses a shared variable concurrently. Your goal is to get both threads to access the shared
variable over and over in order to check whether any synchronization errors occur, and if so,
to characterize how often they occur. We will discuss this in class.

2. Run the program and see how frequently synchronization errors occur when there is no
synchronization control.

3. Now use the broken lock implementation to enforce exclusive access to the shared variable.
Test whether your program is in fact achieving mutual exclusion. What is the frequency of
synchronization errors now?

4. Finally, replace the broken lock implementation with the “correct” one. What is the fre-
quency of synchronization errors now? Can we prove that the “correct” implementation is
correct?

1



Homework 5 2

Experiment 2

1. Read the handout from Programming with POSIX threads (butenhof97mutex.pdf) that de-
scribes pthread mutexes. Print the documentation of the relevant library functions.

2. Make a copy of lock.c and call it mutex.c. Change the implementation of make lock, acquire
and release so that they use pthread mutexes. This should be a trivial implementation,
since mutexes are the same thing as locks. All you are doing is creating a veneer that changes
the interface.

3. What is the frequency of synchronization errors using the pthread lock implementation?

4. Time your program to compare the efficiency of my lock implementation with pthread mu-
texes. Which is faster? Where is the extra time spent, in user code, system code, or operating
system overhead?

Experiment 3

1. Read the handout from Programming with POSIX threads (butenhof97condition.pdf) that
describes pthread condition variables. Print the documentation of the relevant library func-
tions.

2. Write an implementation of a Semaphore using pthread mutexes and condition variables.
Your implementation should provide functions named make semaphore, semaphore wait,
and semaphore signal, in a file named semaphore.c. You should also provide a header file
named semaphore.h that includes the type definition for Semaphore and prototypes of the
semaphore “methods”.

3. Create a modified version of your program that uses your Semaphore implementation as a
mutex.

4. Add a line to the Makefile to build a program named semlock using your Semaphore imple-
mentation.

5. Run your program and confirm that there are no synchronization errors.

6. Time your program to compare the efficiency of using your Semaphore as a mutex as opposed
to using a pthread mutex. Which is faster? Where is the extra time spent, in user code,
system code, or operating system overhead?


